Morningside Center of Mathematics
Chinese Academy of Sciences
Morningside Center of Mathematics
Chinese Academy of Sciences
Title: | Counting zeros in quaternion algebras using Jacobi forms |
Speaker: | Prof. Haigang Zhou (Tongji University) |
Time: | 2016-10-20, 15:15-16:15 |
Place: | 610 |
Abstract: | We use the theory of Jacobi forms to study the number of elements in a maximal order of a definite quaternion algebra over the field of rational numbers whose characteristic polynomial equals a given polynomial. A certain weighted average of such numbers equals (up to some trivial factors) the Hurwitz class number $H(4n-r^2)$. As a consequence we obtain new proofs for Eichler's trace formula and for formulas for the class and type number of definite quaternion algebras. As a secondary result we derive explicit formulas for Jacobi Eisenstein series of weight~$2$ on $\Gamma_0(N)$ and for the action of Hecke operators on Jacobi theta series associated to maximal orders of definite quaternion algebras. |
Attachment: |
中国科学院晨兴数学中心2014-2019版权所有 京ICP备05002806号
北京市海淀区中关村东路55号 邮政编码:100190
电话:86-10-82541165 Email: mcmadmin@math.ac.cn