Title: Multiplicity one for the $\bmod p$ cohomology of Shimura curves
Yongquan Hu
Chinese Academy of Sciences, Morningside Center of Mathematics

Abstract

At present, the $\bmod p$ (and p-adic) local Langlands correspondence is only well understood for the group $\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right)$. One of the main difficulties is that little is known about supersingular representations besides this case, and we do know that there is no simple one-toone correspondence between representations of $\mathrm{GL}_{2}(K)$ with two-dimensional representations of $\operatorname{Gal}(\bar{K} / K)$, at least when K / \mathbb{Q}_{p} is (non-trivial) finite unramified.

However, the Buzzard-Diamond-Jarvis conjecture and the mod p local-global compatibility for $\mathrm{GL}_{2} / \mathbb{Q}$ suggest that this hypothetical correspondence may be realized in the cohomology of Shimura curves with characteristic p coefficients (cut out by some modular residual global representation \bar{r}). Moreover, the work of Gee, Breuil and Emerton-Gee-Savitt show that, to get information about the $\mathrm{GL}_{2}(K)$-action on the cohomology, one could instead study the geometry of certain Galois deformation rings of the p-component of \bar{r}. In a work in progress with Haoran Wang, we push forward their analysis of the structure of potentially Barsotti-Tate deformation rings and, as an application, we prove a multiplicity one result of the cohomology at full congruence level when \bar{r} is reducible generic non-split at p. (The semi-simple case was previously proved by Le-Morra-Schraen and by ourselves.)

