Morningside Center of Mathematics
Chinese Academy of Sciences
Morningside Center of Mathematics
Chinese Academy of Sciences
Title: | Overview on functional transcendence |
Speaker: | Prof. Ziyang Gao (IMJ-PRG) |
Time: | 2018-8-28, 10:00-12:00 |
Place: | N818 |
Abstract: | In 1983, Faltings proved the Mordell conjecture: let $K$ be a number field and let $C$ be a curve over $K$ of genus $g \ge 2$, then $\#C(K)$ is finite. One wishes to look for a uniform bound for $\#C(K)$ (conjectured by Caporaso-Harris-Mazur). After a series of work by David-Philippon and R\'{e}mond, it is known that $\#C(K)$ is bounded above in terms of $g$, $[K:\mathbb{Q}]$, $\mathrm{rank}J(C)(K)$ and the Faltings height of $J(C)$ (denoted by $h_F(J(C))$). The goal of this series of lectures is to present an idea to remove the dependence on $h_F(J(C))$ and prove that $\#C(K) \le c(g,[K:\mathbb{Q}])^{\mathrm{rank}J(C)(K)}$ for some constant $c(g,[K:\mathbb{Q}]) > 0$. The crucial point is to prove a height inequality. This talk is a introduction to the universal abelian variety and the Betti map. State and explain the Ax-Schanuel theorem for the universal abelian varieties. |
Attachment: |
中国科学院晨兴数学中心2014-2019版权所有 京ICP备05002806号
北京市海淀区中关村东路55号 邮政编码:100190
电话:86-10-82541165 Email: mcmadmin@math.ac.cn