Speaker: Prof. Ziyang Gao (CNRS and Princeton)
Place and Time: South Building 817, Aug 18, 4:00pm-5:30pm
Title: Foliations in abelian schemes
Abstract: Let $\mathcal{A}/S$ be an abelian scheme of relative dimension $g$ over a smooth quasi-projective complex variety. Suppose it has trivial isotrivial part. Restricted to a non-empty open simply-connected subset $\Delta$, there is a natural real-analytic isomorphism $i: \mathcal{A}|_{\Delta} \cong \Delta\times\mathbb{T}^{2g}$. We prove the following result: if an irreducible subvariety $\mathcal{X}$ of $\mathcal{A}$ satisfies $\mathcal{X}|_{\Delta} = i^{-1(\Delta \times Y)$ for some subset $Y \subset \mathbb{T}^{2g}$, then $\mathcal{X}$ is the translate of an abelian subscheme by a torsion section. The proof uses o-minimal theory.