Speaker: Dr. Guhanvenkat Harikumar (MCM)
Title: Stark-Heegner cycles for Bianchi modular forms
Time: 10:30-11:30am, Oct 31, 2019
Place: MCM110
Abstract: In his seminal paper in 2001, Henri Darmon came up with a systematic construction of p-adic points, viz. Stark-Heegner points, on elliptic curves over the rationals. In this talk, I will report on the construction of local (p-adic) cohomology classes in the Harris-Taylor-Soudry representation associated to a Bianchi cusp form, building on the ideas of Henri Darmon and Rotger-Seveso. These local cohomology classes are conjecturally the restriction of global cohomology classes in an appropriate Bloch-Kato Selmer group and have consequences towards the Bloch-Kato-Beilinson conjecture as well as Gross-Zagier type results. This is based on a joint work with Chris Williams (University of Warwick).