Speaker: Dr. Luochen Zhao (MCM, CAS)
Time: 14:30-15:30 September 4, 2025 (Thursday)
Venue: MCM110
Title: On the arithmetic of Bernoulli--Hurwitz periods
Abstract: Let E be an elliptic curve with CM by an imaginary quadratic field K. The values of the classical Eisenstein series at E are algebraic and are called Bernoulli--Hurwitz numbers, and they admit a p-adic interpolation by specializing Katz's one-variable Eisenstein measure at E. We will explain that the periods of this p-adic measure are modular, i.e., are special values of certain weight one higher level Eisenstein series. Furthermore, we explain a new proof of the interpolation by this modularity, as well as how one can get a p-adic Kronecker's first limit formula.