Positivity in hyperk\"{a}hler manifolds via Rozansky—Witten theory

Prof. Chen Jiang
2025-09-17 10:30-11:30
ZOOM

Speaker: Prof. Chen Jiang (Fudan University)
Time: 10:30-11:30  September 17th, 2025 (Wednesday)
Place: Online (
Zoom ID:  3329836068  Password:  mcm1234)

Title: Positivity in hyperk\"{a}hler manifolds via Rozansky—Witten theory

Abstract: For a hyperk\"{a}hler manifold $X$ of dimension $2n$, Huybrechts showed that there are constants $a_0, a_2, \dots, a_{2n}$ such that $$\chi(L) =\sum_{i=0}^n\frac{a_{2i}}{(2i)!}q_X(c_1(L))^{i}$$ for any line bundle $L$ on $X$, where $q_X$ is the Beauville--Bogomolov--Fujiki quadratic form of $X$. Here the polynomial $\sum_{i=0}^n\frac{a_{2i}}{(2i)!}q^{i}$ is called the Riemann--Roch polynomial of $X$.

In this talk, I will discuss recent progress on the positivity of coefficients of the Riemann--Roch polynomial and also positivity of Todd classes. Such positivity results follows from a Lefschetz-type decomposition of the root of Todd genus via the Rozansky—Witten theory.