
NOTES ON TATE’S THESIS

YICHAO TIAN

The aim of this short note is to explain Tate’s thesis [Ta50] on the harmonic analysis on
Adèles and Idèles, the functional equations of Dedekind Zeta functions and Hecke L-series.
For general reference on adèles and idèles, we refer the reader to [We74].

1. Local Theory

1.1. Let k be a local field of characteristic 0, i.e. R, C or a finite extension of Qp. If k is
p-adic, we denote by O ⊂ k the ring of integers in k, p ⊂ O the maximal ideal, and $ ∈ p
a uniformizer of O. If a is a fractional ideal of O, we denote by Na ∈ Q the norm of a. So
if a ⊂ O is an ideal, we have Na = |O/a|. Let | · | : k → R≥0 be the normalized absolute
value on k, i.e. for x ∈ k, we have

|x| =


|x|R if k = R;

|x|2C if k = C;

N(p)−ord$(x) if k is p-adic and x = u$ord$(x) with u ∈ O×.

We denote by k+ the additive group of k. Consider the unitary character ψ : k+ → C×
defined as follows:

(1.1.1) ψ(x) =


e−2πix if k = R;

e−2πi(x+x̄) if k = C;

e2πiλ(Trk/Qp (x)) if k is p-adic,

where λ(·) means the decimal part of a p-adic number. For any ξ ∈ k, we note by ψξ the
additive character x 7→ ψ(xξ) of k+. Note that if k is non-archimedean, ψ(x) = 1 if and
only if x ∈ d−1, where d is the different of k over Qp, i.e.

x ∈ d−1 ⇔ Trk/Qp(xy) ∈ Zp ∀y ∈ O.

Proposition 1.2. The map Ψ : ξ 7→ ψξ defines an isomorphism of topological groups

k+ ' k̂+, where k̂+ denotes the group of unitary characters of k+.

Proof. If k = R or C, this is well known in classical Fourier analysis. We assume here k is
non-archimedean.

(1) It’s clear that Ψ is a homomorphism of groups. We show first that Ψ is continuous
(at 0). If ξ ∈ pm, then ψξ is trivial on d−1p−m. Since the subsets

Um = {χ ∈ k̂+ | χ is trivial on d−1p−m}

form a fundamental system of open neighborhoods of 0 in k̂+, the continuity of Ψ follows
immediately.
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(2) Next, we show that Ψ : k → Ψ(k) ⊂ k̂ is homoemorphism of k onto its image.
We need to check that if (xn)n≥1 ∈ k is a sequence such that ψxn → 1 uniformly for all
compact subsets of k, then xn converges to 1 in k. Consider the compact open subgroup
p−m for m ∈ Z. Then for any 1/2 > ε > 0, there exists an integer N > 0 such that
|ψ(xnz)− 1| < ε for all n > N and z ∈ p−m. But xnp

−m is a subgroup and the open ball
B(1, ε) ⊂ C× contains no subgroup of S1. Hence we have ψ(xnz) = 1 for all z ∈ p−m, so
xn ∈ d−1pm.

(3) The image of Ψ is dense in k. Let H be the image of Ψ, and H̄ ⊂ k̂ be its closure.
Then we have

H̄⊥ = {x ∈ ̂̂k ' k | χ(x) = 1, ∀χ ∈ H}
= {x ∈ k | ψ(xξ) = 1, ∀ξ ∈ k} = {0}

Hence, we have H̄ = k̂.
(4) The proof of the Proposition will be complete by the Lemma 1.3 below. �

Lemma 1.3. Let G be a locally compact topological group, H ⊂ G be a locally compact
subgroup. Then H is closed in G.

Proof. Let hn be a sequence in H that converges to g ∈ G. We need to prove that
g ∈ H. Let (Ur)r≥0 be a fundamental system of compact neighborhoods of 0. We have
∩r≥0Ur = {0}. Then for any r, there exists an integer Nr > 0 such that hn ∈ g+Ur for all
n ≥ Nr. Up to modifying Ur, we may assume hn−hm ∈ H∩Ur−1 for any n,m ∈ Nr. Note
that H ∩ Ur−1 is also compact by the local compactness of H. Up to replacing {Ur}r≥0

by a subsequence, we may choose mr for each integer r such that

hmr+1 + Ur ∩H ⊂ hmr + Ur−1 ∩H.

By compactness, the intersection ⋂
r≥1

(hmr + Ur−1 ∩H)

must contain an element h ∈ H. It’s easy to see that h = g, since ∩r≥0Ur = {0}.
�

1.4. Now we choose a Haar measure dx on k as follows. If k = R, we take dx to be the
usual Lebesgue measure on R; if k = C, we take dx to be twice of the usual Lebesgue

measure on C; and if k is non-archimedean, we normalize the measure by
∫
O dx = (Nd)−

1
2 .

Let L1(k,C) be the space of complex valued absolutely integrable functions on k. For
f ∈ L1(k,C), we define the Fourier transform of f to be

(1.4.1) f̂(ξ) =

∫
k
f(x)ψ(xξ)dx.

Let S(k) be the space of Schwartz functions on k, i.e.

S(R) = {f ∈ C∞(R) | ∀n,m ∈ N, |xnd
mf

dxm
| is bounded};
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we have a similar definition for k = C; and if k is p-adic, S(k) consists of locally constant
and compactly supported functions on k. In all these cases, the space S(k) is dense in
L1(k,C).

Proposition 1.5. The map f 7→ f̂ preserves S(k), and we have
ˆ̂
f(x) = f(−x) for any

f ∈ S(k).

The following lemma will be useful in the sequels.

Lemma 1.6. Assume k is non-archimedean. The local Fourier transform of f = 1a+p`,

the characteristic function of the set a+ p`, is

(1.6.1) f̂(x) = ψ(ax)(Nd)−
1
2 (Np)−`1d−1p−` .

In particular, we have f̂ ∈ S(k).

Proof. By definition, we have

f̂(x) =

∫
a+p`

ψ(xy)dy = ψ(ax)

∫
p`
ψ(xy)dy.

The lemma follows immediately from∫
p`
ψ(xy)dy =

{
(Nd)−

1
2 (Np)−` if x ∈ d−1p−`

0 otherwise.

�

Proof of 1.5. If k is archimedean, this is well-known in classical analysis. Consider here
the non-archimedean case. Since any compactly supported locally constant function on k
is a linear combination of functions 1a+p` . We may assume thus f = 1a+p` . The first part
of the proposition follows from the previous lemma. For the second part, we have

ˆ̂
f(x) =

∫
k
f̂(y)ψ(xy)dy = (Nd)−

1
2 (Np)−`

∫
d−1p−`

ψ((x+ a)y)dy

= (Nd)−
1
2 (Np)−`(Nd)−

1
2 (Np)ord$(d)+`1−a+p`

= 1−a+p` .

In the third equality above, we have used (1.6.1) with ` replaced by −ord$(d) − ` and x

replaced by x+ a. Now it’s clear that
ˆ̂
f(x) = f(−x). �

1.7. Now consider the multiplicative group k×, and put

U = {x ∈ k× | |x| = 1}.

So U = {±1} if k = R, U = S1 is the group of unit circle if k = C, and U = O× if k is
p-adic. We have

k×/U =

{
R×+ if k = R,C;

Z if k is p-adic.
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Recall that a quasi-character of k× is a continuous homomorphism χ : k× → C×. We say
χ is a (unitary) character if |χ(x)| = 1 for all x ∈ k×, and χ is unramified if χ|U is trivial.
So χ is unramified if and only if there is s ∈ C such that χ(x) = |x|s. Note that such an
s is determined by χ if k = R or C, and determined up to 2πi/log(Np) if k is p-adic.

Lemma 1.8. For any quasi-character χ of k×, there exists a unique unitary character χ0

of k× such that χ = χ0| · |s.

Proof. For any x ∈ k×, one can write uniquely x = x̃ρ where x̃ ∈ U and ρ ∈ R×+ if k = R
or C, and ρ ∈ $Z if k is non-archimedean. We define χ0 as χ0(x) = (χ|U )(x̃). One checks
easily that the quasi-character χ/χ0 is unramified. �

Let χ be a quasi-character of k×, and s ∈ C be the number appearing in the Lemma
above. Note that σ(χ) = <(s) is uniquely determined by χ, and we call it the exponent
of χ. Let ν ∈ Z≥0 be the minimal integer such that χ|1+pν is trivial. We call the ideal
fχ = pν conductor of χ. So the conductor of χ is O if and only if χ is unramified.

1.9. We choose the Haar measure on k× to be d×x = δ(k)dx/|x|, where

(1.9.1) δ(k) =

{
1 if k = R,C;
Np
Np−1 if k is non-archimedean.

If k is non-archimedean, the factor δ(k) is justified by the fact that∫
U

dx = (Nd)−
1
2 .

Definition 1.10. For f ∈ S(k), we put

ζ(f, χ) =

∫
k×
f(x)χ(x) d×x,

which converges for any quasi-character χ with σ(χ) > 0. We call ζ(f, χ) the local zeta
function associated with f (in quasi-characters).

Proposition 1.11. For any f, g ∈ S(k), we have

ζ(f, χ)ζ(ĝ, χ̂) = ζ(f̂ , χ̂)ζ(g, χ),

where f̂ , ĝ are Fourier transforms of f and g, and χ̂ = | · |χ−1 for any quasi-character χ
with 0 < σ(χ) < 1.

Proof.

ζ(f, χ)ζ(ĝ, χ̂) =

∫
k×

(∫
k×
f(x)ĝ(xy)|x|d×x

)
χ(y−1)|y|d×y

= δ(k)

∫
k×

(∫
k

∫
k
f(x)g(z)ψ(xyz)dzdx

)
χ(y−1)|y|d×y.

To finish the proof of the Proposition, it suffices to note that the expression above is
symmetric for f and g. �
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We endow the set of quasi-characters with a structure of complex manifold such that
for any fixed quasi-character χ the map s 7→ χ| · |s induces an isomorphism of complex
manifolds from C to a connected component of the set of quasi-characters.

Theorem 1.12. For any f ∈ S(k), the function ζ(f, χ) can be continued to a meromorphic
function on the space of all quasi-characters. Moreover, it satisfies the functional equation

(1.12.1) ζ(f, χ) = ρ(χ)ζ(f̂ , χ̂),

where ρ(χ) is a meromorphic function of χ independent of f given as follows:

(1) If k = R, then χ(x) = |x|s or χ(x) = sgn(x)|x|s for some s ∈ C. We have

ρ(| · |s) = 21−sπ−s cos(
πs

2
)Γ(s), ρ(sgn| · |s) = i21−sπ−s sin(

πs

2
)Γ(s).

(2) If k = C, then there exists n ∈ Z and s ∈ C such that χ = χn| · |s where χn is the
unitary character χn(reiθ) = einθ. We have

ρ(χn| · |s) = i|n|
(2π)1−sΓ(s+ |n|

2 )

(2π)sΓ(1− s+ |n|
2 )
.

(3) Assume k is p-adic. If χ is unramified, then

ρ(| · |s) = (Nd)s−
1
2

1− (Np)s−1

1−Np−s
.

If χ = χ0| · |s is ramified, where χ0 is unitary with χ0($) = 1 as in Lemma 1.8,
then one has

ρ(χ0| · |s) = N(dfχ)s−
1
2 ρ0(χ0)

with

ρ0(χ0) = N(fχ)−
1
2

∑
x

χ0(−x)ψ(
x

$ord$(dfχ)
)

where x runs over a set of representatives of O×/(1 + fχ).

Proof. By Proposition 1.11, the function ρ(χ) = ζ(f,χ)

ζ(f̂ ,χ̂)
is independent of f . This proves

the functional equation (1.12.1). Note that ζ(f, χ) is well defined if σ(χ) > 0, and ζ(f̂ , χ̂)
is well defined if σ(χ) < 1. Therefore, once we show that ρ(χ) is meromorphic as in the
statement, it will follow from the functional equation (1.12.1) that ζ(f, χ) can be continued
to a meromorphic function in χ. It remains to compute ρ(χ) by choosing special functions
f ∈ S(k).

(1) Assume k = R. If χ = | · |s, we choose f = e−πx
2
. We have

ζ(f, | · |s) =

∫
R×

e−πx
2 |x|sd×x = 2

∫ +∞

0
e−πx

2
xs−1dx = π−

s
2 Γ(

s

2
).

On the other hand,

(1.12.2) f̂(y) =

∫
R
e−π(x2+2ixy)dx = e−y

2

∫
R
e−π(x+yi)2

dx.
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Using the well-known fact that∫
R
e−π(x+yi)2

dx =

∫
R
e−πx

2
dx = 1,

we get f̂ = f . Hence, we have ζ(f̂ , | · |1−s) = π−
1−s

2 Γ(1−s
2 ) and

ρ(| · |s) =
π−

s
2 Γ( s2)

π−
1−s

2 Γ(1−s
2 )

= π−s
√
π

Γ( s2)Γ( s+1
2 )

Γ(1−s
2 )Γ(1+s

2 )

Now the formula for ρ(| · |s) follows from the properties of Gamma functions

Γ(
s

2
)Γ(

s+ 1

2
) = 21−s√πΓ(s), Γ(

1− s
2

)Γ(
1 + s

2
) =

π

sin(π(1+s)
2 )

.

If χ = sgn| · |s, we take f = xe−πx
2
. A similar computation shows that

ζ(f, sgn| · |s) = π−
s+1

2 Γ(
s+ 1

2
).

Taking derivatives with respect to y in (1.12.2), we get f̂ = −if . So we have

ζ(f̂ , sgn| · |1−s) = −iπ
s
2
−1Γ(1− s

2
).

Therefore, we get

ρ(sgn| · |s) =
π−

s+1
2 Γ( s+1

2 )

−iπ
s
2
−1Γ(1− s

2)
= iπ−s

√
π

Γ( s+1
2 )Γ( s2)

Γ(1− s
2)Γ( s2)

= i21−sπ−s sin(
πs

2
)Γ(s).

(2) Assume k = C. If χ = | · |s, we take f(z) = e−π(zz̄). The local zeta function
associated with f is

ζ(f, | · |s) =

∫
C×

e−πzz̄(zz̄)sd×z

=

∫ 2π

θ=0

∫ +∞

r=0
e−πr

2
r2s 2rdrdθ

r2

= 4π

∫ +∞

0
e−πr

2
r2s−1dr

= 4π

∫ +∞

0
ts−

1
2 e−πt

dt

2
√
t

(set t = r2)

= 2π1−sΓ(s).
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The Fourier transform of f is

f̂(z) =

∫
C
e−πww̄e−2πi(zw+z̄w̄)dw(1.12.3)

= 2

∫ +∞

−∞

∫ +∞

−∞
e−π(u2+v2)e−4πi(ux−vy)dudv (put z = x+ iy, w = u+ iv)

= 2e−4π(x2+y2)

∫ +∞

−∞
e−π(u+2ix)2

du

∫ +∞

−∞
e−π(v−2iy)2

dv

= 2f(2z).

Therefore, one has ζ(f̂ , | · |1−s) = 22s−1ζ(f, | · |1−s) = 22sπsΓ(1− s), thus

ρ(| · |s) = (2π)1−2s Γ(s)

Γ(1− s)
.

Let n ≥ 1 and χ = χ−n| · |s. We put fn = zne−π(zz̄). We compute first the local zeta
function of fn:

ζ(fn, χ−n| · |s) =

∫
C×

zne−π(zz̄)χ−n(z)(zz̄)sd×z(1.12.4)

=

∫ 2π

θ=0

∫ +∞

r=0
e−πr

2
r2s+n 2rdrdθ

r2

= 4π

∫ +∞

0
e−πr

2
r2s+n−1dr

= 4π

∫ +∞

0
e−πtts+

n−1
2

dt

2
√
t

= 2π1−(s+n
2

)Γ(s+
n

2
).

To find the Fourier transform of fn, we consider the equality (1.12.3)

2e−4π(zz̄) =

∫
C
e−π(ww̄)e−2πi(zw+z̄w̄)dw.

Regarding z and z̄ as independent variables and applying ∂n

∂zn , we get

2(−2iz̄)ne−4πzz̄ =

∫
C
wne−π(ww̄)e−2πi(zw+z̄w̄)dw,

that is, f̂n(z) = 2f̄n(2iz). A similar computation as (1.12.4) shows that

ζ(f̂n(z), χ̂) = ζ(2f̄n(2iz), χn| · |1−s) = (−i)n22sπs−
n
2 Γ(s+

n

2
).

Therefore, we get

ρ(χ−n| · |s) =
2π1−(s+n

2
)Γ(s+ n

2 )

(−i)n22sπs−
n
2 Γ(s+ n

2 )
= in(2π)1−2s Γ(s+ n

2 )

Γ(n2 + 1− s)
.

The formulae for ρ(χn| · |s) can be proved in the same way by choosing f = f̄n.
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(3) Assume k is p-adic. Consider first the case χ = | · |s. We take f = 1O. In the proof

of Proposition 1.5, we have seen that f̂ = (Nd)−
1
2 1d−1 . We have

ζ(f, χ) =

∫
O−{0}

|x|sd×x.

As O − {0} =
∐+∞
n=0$

nO×, it follows that

ζ(f, χ) =
+∞∑
n=0

(Np)−ns
∫
O×

d×x = (Nd)−
1
2

1

1− (Np)−s

Similarly, using d−1 − {0} =
∐+∞
n=−ord$(d)$

nO×, one obtains

ζ(f̂ , χ̂) = (Nd)−
1
2

∫
d−1−{0}

|x|1−sd×x

= (Nd)−
1
2

+∞∑
n=−ord$(d)

(Np)n(s−1)

∫
O×

d×x

= (Nd)−1(Np)ord$(d)(1−s)
+∞∑
n=0

Npn(s−1)

= (Nd)−s
1

1−Nps−1
.

The formula for ρ(| · |s) follows immediately.
Now consider the case χ = χ0| · |s with χ0 ramified, unitary and χ0($) = 1. We take

f(x) = ψ(
x

$ord$(dfχ)
)1O.

The local zeta function of f is

ζ(f, χ) =

∫
O−{0}

ψ(
x

$ord$(dfχ)
)χ0(x)|x|sd×x

=
+∞∑
n=0

(Np)−ns
∫
O×

ψ(
x$n

$ord$(dfχ)
)χ0(x)d×x

We claim that

(1.12.5)

∫
O×

ψ(
x$n

$ord$(dfχ)
)χ0(x)d×x = 0 for n ≥ 1.

Consider first the case n ≥ ord$(fχ). We have

ψ(
x$n

$ord$(dfχ)
) = 1 as

x$n

$ord$(dfχ)
∈ d−1.

If S is a set of representatives of O×/(1 + fχ), the integral above is equal to∫
O×

χ0(x)d×x =
(∫

1+fχ

d×x
)∑
x∈S

χ0(x) = 0.
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Assume 0 ≤ n ≤ ord$(fχ)− 1. For any y ∈ 1 + p−nfχ, we have

ψ(
xy$n

$ord$(dfχ)
) = ψ(

x$n

$ord$(dfχ)
).

Therefore, if Sn ⊂ S denotes a subset of representatives of O×/(1 + p−nfχ), we get∫
O×

ψ(
x$n

$ord$(dfχ)
)χ0(x)d×x =

(∫
1+fχ

d×x
)∑
x∈S

χ0(x)ψ(
x$n

$ord$(dfχ)
)

=
(∫

1+fχ

d×x
) ∑
x∈Sn

χ0(x)ψ(
x$n

$ord$(dfχ)
)
∑
y

χ0(y),

where y runs over a set of representatives of (1 + p−nfχ)/(1 + fχ). Note that∑
y

χ0(y) =

{
0 if 1 ≤ n ≤ ord$(fχ),

1 if n = 0.

This proves the claim. It follows that
(1.12.6)

ζ(f, χ) =
(∫

1+fχ

d×x
)∑
x∈S

χ0(x)ψ(
x

$ord$(dfχ)
) = χ0(−1)(

∫
1+fχ

d×x)(N fχ)
1
2 ρ0(χ0),

where we have used the definition of ρ0 in the last step. As in the proof of 1.5, the Fourier
transform of f is

f̂(x) =

∫
O
ψ(

y

$ord$(dfχ)
)ψ(xy)dy

=

∫
O
ψ(y(x+

1

$ord$(dfχ)
))dy

= (Nd)−
1
2 1−$−ord$(dfχ)+d−1 .

We get the local zeta function of f̂

ζ(f̂ , χ̂) = (Nd)−
1
2

∫
−$−ord$(dfχ)+d−1

|x|1−sχ−1
0 (x)d×x

= (Nd)−
1
2 (Np)ord$(dfχ)(1−s)

∫
−$−ord$(dfχ)(1+fχ)

χ−1
0 (x)d×x

Since χ−1
0 (−$ord$(dfχ)(1 + y)) = χ0(−1) for any y ∈ fχ, we get

ζ(f̂ , χ̂) = χ0(−1)(Nd)−
1
2N(dfχ)1−s(∫

1+fχ

d×x
)
.

It thus follows that

ρ(χ0| · |s) =
ζ(f, χ0| · |s)

ζ(f̂ , χ−1
0 | · |1−s)

= N(dfχ)s−
1
2 ρ0(χ0).

�
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Remark 1.13. The number ρ0(χ0) in (3) is a generalization of (normalized) Gauss sum.
By the same method as the classical case, we can show that |ρ0(χ0)| = 1. In general, it’s
an interesting and difficult problem to find the exact argument of ρ0(χ0).

2. Global Theory

Let F be a number field, OF be its ring of integers. Let Σ be the set of all places of
F , and Σf ⊂ Σ (resp. Σ∞ ⊂ Σ) be the subset of non-archimedean (resp. archimedean)
places. For v ∈ Σ, we denote by Fv the completion of F at v. Let dxv be the self-dual
Haar measure on Fv defined in 1.4. If v is finite, we denote by Ov the ring of integers of
Fv, by pv the maximal ideal of Ov, and we fix a uniformizer $v ∈ pv. Let AF be the adèle
ring of F , i.e. the subring of

∏
v∈Σ Fv consisting of elements x = (xv)v with xv ∈ Ov for

almost all v, and AF,f be the ring of finite adèles. We choose the Haar measure on AF as
dx =

∏
v dxv. It induces a quotient Haar measure on AF /F .

Lemma 2.1. Under the notation above, we have
∫
AF /F dx = 1.

Proof. By Chinese reminders theorem, we have AF = F +
∏
v∈Σf

Ov ×
∏
v∈Σ∞

Fv. We get

thus an isomorphism

AF /F ' (
∏
v∈Σf

Ov ×
∏
v∈Σ∞

Fv)/OF .

Hence we have ∫
AF /F

dx =
∏
v∈Σf

∫
Ov

dxv ×
∫

(
∏
v∈Σ∞ Fv)/OF

∏
v∈Σ∞

dxv

=
∏
v∈Σf

(Ndv)
− 1

2 |∆F |1/2,

where dv denotes the different of Fv and ∆F is the discriminant of F . If d denotes the
different of F/Q, then the lemma follows easily from the product formula:

|∆F | = Nd =
∏
v∈Σf

Ndv.

�

For v ∈ Σ, let ψv be the additive character of the local field Fv defined in (1.1.1).
It’s easy to check that ψ =

∏
v∈Σ ψv is trivial on additive group F , therefore it defines a

character of the quotient AF /F . We call it the basic character of AF /F (or AF ). For any
ξ ∈ AF , let ψξ : AF → C× be the character given by x 7→ ψ(xξ).

Proposition 2.2. The map Ψ : ξ 7→ ψξ defines an isomorphism between AF and its

topological dual ÂF . Moreover ψξ is a character of AF /F if and only if ξ ∈ F , i.e. ξ 7→ ψξ

gives rise to an isomorphism of topological groups F ' ÂF /F .

Proof. The proof is similar to that of Proposition 1.2. One checks easily that Ψ is contin-
uous and injective, and Ψ induces a homeomorphism of AF onto its image. Conversely,
let ψ′ : AF → C× be a continuous character. The restriction ψ′v = ψ′|Fv to the v-th local
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component defines a continuous character of Fv. By Proposition 1.2, there exists ξv ∈ Fv
such that ψ′v = ψv(ξv · ). Since ψ′ is continuous, there exists an open neighborhood∏
v∈S Uv×

∏
v/∈S Ov of 0 such that its image under ψ′ lies in B(1, 1/2) ⊂ C×. As B(1, 1/2)

contains no non-trivial subgroups of S1, we see that for any v /∈ S, we have ξv ∈ Ov. This

shows that ξ = (ξv)v∈Σ ∈ AF , and ψ′ = ψξ. This shows that Ψ : AF → ÂF is a bijective
continuous homomorphism of topological groups. To conclude that Ψ is an isomorphism,

we need to show that if ξn ∈ AF is a sequence such that ψξn → 1 in ÂF , we have ξn → 0
in AF as n → +∞. Actually, for any compact subset Uv ⊂ Fv with Uv = Ov for almost
all v and any ε > 0, we have |ψξn − 1|∏

v Uv
< ε for n sufficiently large. By Proposition

1.2, for any finite subset S ⊂ Σ containing Σ∞, we can take (Uv)v∈S sufficiently large and
Uv = Ov for v /∈ S such that |ξn|v < ε for v ∈ S and ξn ∈ Ov for v /∈ S. This means that
ξn → 0 in AF .

For the second part, let Γ ⊂ AF be the subgroup such that Ψ(Γ) ⊂ ÂF consists of all
characters trivial on F . It’s clear that F ⊂ Γ since ψ is trivial on F . To show that Γ = F ,
we consider first the case F = Q. Let γ ∈ Γ. Since AQ = Q + (−1

2 ,
1
2 ] ×

∏
p Zp, we can

write γ = b + c, where b ∈ Q, c∞ ∈ (−1/2, 1/2] and cp ∈ Zp for all primes p. Then we
have

1 = ψγ(1) = ψ(γ) = ψ(b+ c) = ψ(c) = e−2πic∞ .

Hence we have c∞ = 0. Moreover, for any prime p and any integer n ≥ 0, we deduce from

1 = ψγ(
1

pn
) = ψ(

1

pn
(b+ c)) = e

2πiλ(
cp
pn

)

that cp ∈ pnZp, i.e. we have cp = 0. This shows γ = b, and hence Γ = Q. In the general
case, we note that the basic character of AF is the composition of that on AQ with the
trace map TrF/Q : AF → AQ. The following lemma will conclude the proof. �

Lemma 2.3. Let x = (xv)v∈Σ ∈ AF such that TrF/Q(xy) ∈ Q ⊂ AQ for all y ∈ F . Then
we have x ∈ F .

Proof. Let (ei)1≤i≤d be a basis of F/Q, and (e∗i )1≤i≤d be the dual basis with respect to
the perfect pairing F × F → Q given by (x, y) 7→ TrF/Q(xy). For any place p ≤ ∞ of Q,
we have a canonical isomorphism of Qp-algebras

F ⊗Qp '
∏
v|p

Fv.

We put xp = (xv)v|p ∈
∏
v|p Fv. Then we can write xp =

∑d
i=1 ap,iei with ap,i ∈ Qp. As

TrF/Q(xe∗i ) ∈ Q ⊂ AQ for any i, we deduce that ap,i ∈ Q and it’s independent of p. This
shows that x ∈ F . �

Let S(AF ) be the space of Schwartz functions on AF , i.e. the space of finite linear
combinations of functions on AF of the form f =

∏
v fv, where fv ∈ S(Fv) and fv = 1Ov

for almost all v. For any f ∈ S(AF ), we define the Fourier transform of f to be

(2.3.1) f̂(ξ) =

∫
AF
f(x)ψ(xξ)dx.
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Proposition 2.4. (a) The Fourier transform f 7→ f̂ preserves the space S(AF ), and
ˆ̂
f(x) = f(−x).

(b) If f = ⊗vfv with fv ∈ S(Fv) and fv = 1Ov for almost all v. Then f̂ = ⊗vf̂v, where

f̂v is the local Fourier transform (1.4.1) of fv.
(c) For any f ∈ S(A), the infinite sum

∑
x∈F |f(x)| converges, and we have the Poisson

formulae

(2.4.1)
∑
x∈F

f(x) =
∑
ξ∈F

f̂(ξ).

Proof. Statement (a) is a direct consequence of (b), which in turn follows from the local
computations in the proof of 1.5. Now we start to prove (c). We may assume f = ⊗vfv
with fv ∈ S(Fv) and fv = 1Ov for almost all v. Then there exists an open compact
subgroup U ⊂ Af such that Supp(f) ⊂ U ×

∏
v∈Σ∞

Fv. Put OU = F ∩ (U ×
∏
v∈Σ∞

Fv).
This is a lattice in F . Each individual term in the summation

∑
x∈F f(x) is non-zero only

if x ∈ OU . Write f = f∞f∞, where f∞ = ⊗v∈Σf fv and f∞ = ⊗v∈Σ∞fv. Then there exists
a constant C > 0 such that |f∞(x)| < C for all x ∈ U . Hence, we have∑

x∈F
|f(x)| =

∑
x∈OU

|f(x)| < C
∑
x∈OU

|f∞(x)|.

By classical analysis, the sum on the right hand side is convergent. This proves the first
part of (c). It remains to show Poisson’s summation formula (2.4.1). Consider the function
g(x) =

∑
y∈F f(x + y), which converges for any x ∈ AF by the first part of (c). As g(x)

is invariant under translation of F , we regard g(x) as a function on AF /F . Its Fourier
transform of g(x) is

ĝ(ξ) =

∫
AF /F

g(x)ψ(xξ)dx (for ξ ∈ F )

=

∫
AF
f(x)ψ(xξ)dx = f̂(ξ).

By the Fourier inverse formulae (a), we have

g(x) =
∑
ξ∈F

ĝ(ξ)ψ(−xξ).

The formulae (2.4.1) follows by setting x = 0. �

2.5. Let IF = A×F be the multiplicative group of idèles of F , i.e. the subgroup of
∏
v∈Σ F

×
v

consisting of elements x = (xv)v with xv ∈ O×v for almost all v, and I1F be the subgroup of
IF of idèles with norm 1. The diagonal embedding F× ↪→ I1F identifies F× with a discrete
subgroup of I1 for the induced restricted product topology on I1F . A fundamental theorem
in the theory of idèles says that the quotient I1F /F× is compact [We74, IV §4 Thm.6]. We
consider the Haar measure d×x =

∏
v d×xv on IF , where d×xv is the local Haar measure

on F×v considered in 1.9. We use the same notation for the induced Haar measures on I1F
and I1F /F×.
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Proposition 2.6. Under the notation above, we have

Vol(I1F /F×) =

∫
I1F /F×

d×x =
2r1(2π)r2hR

|∆F |1/2w
,

where r1 (resp. r2) is the number of real places (resp. complex places) of F , h is the class
number of F , ∆F is the discriminant, R is the regulator, and w denotes the number of
roots of unity in F .

Proof. Note first that Vol(I1F /F×) is finite, since I1F /F× is compact. For each x =

(xv)v∈Σ ∈ IF , we denote by Div(x) =
∏
v∈Σf

p
ordv(xv)
v be the fractional ideal associated

with x. Then Div induces a short exact sequence

0→ (
∏
v∈Σf

O×v × (R×)r1 × (C×)r2)× F× → IF → ClF → 0,

where ClF denotes the class group of F . Let Ω be the subgroup of (R×)r1 × (C×)r2 with
product of absolute values

∏r1
i=1 |xi| ×

∏r2
i=1 |zi|C = 1. The the exact sequence above

induces a similar exact sequence

0→ (
∏
v∈Σf

O×v × Ω)× F× → I1F → ClF → 0.

Therefore, one gets ∫
I1F /F×

d×x× = h

∫
(
∏
v O
×
v ×Ω)/(

∏
v O
×
v ×Ω)∩F×

d×x.

Let UF denote the group of units of F . We have (
∏
vO×v × Ω) ∩ F× = UF , and hence∫

(
∏
v O
×
v ×Ω)/F×∩(

∏
v O
×
v ×Ω)

= (
∏
v∈Σf

∫
O×v

dx×v )×
∫

Ω/UF

d×x =
∏
v∈Σf

Nd
− 1

2
v

∫
Ω/UF

d×x.

In view of the product formula
∏
v∈Σf

Nd−
1
2 = |∆F |−

1
2 , to complete the proof, it suffices

to prove that

(2.6.1)

∫
Ω/UF

d×x =
2r1(2π)r2R

w
.

Consider the map

Log : (R×)r1 × (C×)r2 → Rr1+r2

((xi)1≤i≤r1 , (zj)1≤j≤r2) 7→ ((log |xi|)1≤i≤r1 , (log |zj |2)1≤j≤r2).

Let S1 be the unit circle subgroup of C×, and V be the subspace of Rr1+r2 defined by the
linear equation

∑r1
i=1 xi+

∑r2
j=1 yj = 0. Then the map Log induces a short exact sequence

of abelian groups

0→ {±1}r1 × (S1)r2 → Ω
Log−−→ V → 0.
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If µF denotes the group of roots of unity in F , we have ({±1}r1 × (S1)r2) ∩ UF = µF .
Therefore, one obtains∫

Ω/UF

d×x =
(∫
{±1}r1×(S1)r2/µF

d×x
)
×
(∫
V/Log(UF )

d×x
)
.

By the definition of the Haar measure on IF , the induced measure on Ω ⊂ (R×)r1 ×
(C×)r2 is determined as follows. On each copy of R×, the measure is given by d×x = dx

|x| ,

where dx is the usual Lebesgue measure on R; on each copy of C×, the measure is given
by

d×z = 2
dx ∧ dy
|z|2

=
d(r2)

r2
∧ dθ,

where z = x + iy = reiθ. Therefore, the Haar measure on IF induces the usual Lebesgue
measure on Log(Ω) = V , and the measure

∏r2
j=1 dθj on (S1)r2 .1 It follows that∫

{±1}r1×(S1)r2/µF

d×x =
2r1(2π)r2

w
.

By the definition of the regulator, we have R =
∫
V/Log(UF ) dx. Now the formula (2.6.1)

follows immediately. This finished the proof. �

2.7. A Hecke character (or Grössencharacter) of F is a continuous homomorphism χ :
IF /F× → C×. We say χ is unramified if there exists a complex number s ∈ C such that
χ(x) = |x|s. We denote by X the set of Hecke characters of F . We equip X with a
structure of Riemann surface such that for each fixed character χ, the map s 7→ χ| · |s is
a local isomorphism of C into X.

Now we choose a splitting IF /F× = I1F /F× × R×+ of the norm map | · | : IF /F× → R×+.
For every Hecke character χ, we put χ0 = χ|I1F /F× and denote still by χ0 its extension

to IF /F× by requiring χ0 is trivial on the chosen complement R×+ of I1F /F×. Note that

χ0 is necessarily unitary since I1F /F× is compact and χ/χ0 is unramified, i.e. χ = χ0| · |s
with s ∈ C. We put σ(χ) = <(s), which is independent of the choice of the splitting. For
v ∈ Σ, we put χv = χ|F×v . The local component χv is unramified for almost all v.

Definition 2.8. Let f ∈ S(AF ) and χ be a Hecke character of F . We define the zeta
function of f at χ to be

ζ(f, χ) =

∫
IF
f(x)χ(x)d×x.

Lemma 2.9. Let f ∈ S(AF ) and χ ∈ X. Then the zeta function ζ(f, χ) converges
absolutely for σ(χ) > 1.

1Note that the finiteness of Vol(I1/F×) implies that
∫
V/Log(UF )

d×x is finite, and hence Log(UF ) ⊂ V

is a lattice. This actually gives another proof of Dirichlet’s theorem that UF has rank r1 + r2 − 1.
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Proof. We may assume f = ⊗v∈Σfv with fv = 1Ov for almost all v ∈ Σf , and χ = χ0| · |s
where χ0 : I1F /F× → S1 unitary. By definition, we have an Euler product

ζ(f, χ) =
∏
v∈Σ

ζ(fv, χv),

where ζ(fv, χv) is the local zeta function defined in 1.10. We have seen in the proof of
Theorem 1.12(3) that

ζ(1Ov , | · |sv) = (Ndv)
− 1

2
1

1−Np−sv
.

Thus there exists a finite subset S of places such that

|ζ(f, χ0| · |s)| ≤
∏
v∈S
|ζ(fv, χ0,v| · |sv)|

∏
v/∈S

1

1−Np−σv
.

Since each ζ(fv, χ0,v| · |sv) converges for <(s) > 0, we are reduced to showing that the
product

∏
v/∈S

1
1−Np−σv

converges absolutely for σ > 1. If F = Q, this is a well-known

theorem of Euler. In the general case, we have∏
v/∈S

1

1−Np−σv
≤
∏
p

∏
v|p

1

1−Np−σv
≤ (
∏
p

1

1− p−σ
)[F :Q].

�

Theorem 2.10 (Tate). Let f ∈ S(AF ). The zeta function ζ(f, χ) can be analytically
continued to a meromorphic function on the whole complex manifold X. It satisfies the
functional equation

(2.10.1) ζ(f, χ) = ζ(f̂ , χ̂),

where f̂ is the Fourier transform of f (2.3.1), and χ̂ = | · |χ−1. Moreover, ζ(f, χ) is
holomorphic on the complex manifold X except for two simple poles at χ = 1 and χ = | · |,
with residues −f(0)Vol(I1F /F×) at χ = 1 and f̂(0)Vol(I1F /F×) at χ = | · |, where

Vol(I1F /F×) =
2r1(2π)r2hR

w
√
|∆F |

.

Proof. Let I≥1
F (resp. I≤1

F ) be the subset of IF with norm ≥ 1 (resp. ≤ 1). Since I1F =

I≥1
F ∩ I≤1

F has Haar measure 0 in IF , we have

ζ(f, χ) =

∫
IF
f(x)χ(x)d×x =

∫
I≥1
F

f(x)χ(x)d×x+

∫
I≤1
F

f(x)χ(x)d×x.

Note that f is well-behaved when |x| → ∞, the first integral
∫
I≥1
F
f(x)χ(x)d×x converges

absolutely for all χ ∈ X, thus defines a holomorphic function on the whole complex
manifold X. For the second integral, we have∫

I≤1
F

f(x)χ(x)d×x =

∫
I≤1
F /F×

(
∑
ξ∈F×

f(ξx))χ(x)d×x
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by the triviality of χ on F×. It’s easy to check that the Fourier transform of f(x · ) is

|x|−1f̂( ·x). It follows from the Poisson formulae (2.4.1) that∑
ξ∈F×

f(xξ) =
∑
ξ∈F×

1

|x|
f̂(
ξ

x
) +

1

|x|
f̂(0)− f(0).

Therefore, we get∫
I≤1
F /F×

f(x)χ(x)d×x =

∫
I≤1
F /F×

(
∑
ξ∈F×

1

|x|
f̂(
ξ

x
))χ(x)d×x+

∫
I≤1
F /F×

(
1

|x|
f̂(0)−f(0))χ(x)d×x.

Making the change of variable y = 1
x , the first term on the right hand side above becomes∫

I≤1
F /F×

(
∑
ξ∈F×

f̂(
ξ

x
))χ(x)d× =

∫
I≥1
F /F×

(
∑
ξ∈F×

f̂(yξ))χ̂(y)d×y

=

∫
I≥1
F

f̂(y)χ̂(y)d×y.

We choose a splitting IF /F× = I1F /F× × R×+ as in 2.7, and write that χ = χ0| · |s, with

χ0 : I1F /F× → C× is unitary and s ∈ C. We have∫
I≤1
F /F×

(
f̂(0)

|x|
− f(0))χ(x)d×x = (

∫
I1F /F×

χ0(x)d×x)(

∫ 1

t=0
(
f̂(0)

t
− f(0))ts−1dt.

We have∫
I1F /F×

χ0(x)d×x = Vol(I1F /F×)δχ0,1 =

{
0 if χ0 is non-trivial;

Vol(I1F /F×) if χ0 is trivial.

For the second term, we have∫ 1

t=0
(
f̂(0)

t
− f(0))ts−1dt =

f̂(0)

s− 1
− f(0)

s
.

Combining all the computations above, we get

ζ(f, χ) =

∫
I≥1
F

f(x)χ(x)d×x+

∫
I≥1
F

f̂(x)χ̂(x)d×x+ Vol(I1F /F×)(
f̂(0)

s− 1
− f(0)

s
)δχ0,1.

Now it’s clear that the right hand side of the equation above is invariant with f replaced
by f̂ and χ replaced by χ̂. Thus (2.10.1) follows immediately. The moreover part follows
from the fact that the first two integrals above define holomorphic functions on X. �

2.11. We indicate how to apply Tate’s general theory to recover the classical results on
the Dedekind Zeta function of a number field. Recall that Dedekind’s zeta function is
defined to be

ζF (s) =
∏
v∈Σ

1

1−Np−sv
=
∑
a⊂OF

1

(Na)s
,

which converges absolutely for <(s) > 1. In the classical theory of Dedekind’s zeta func-
tion, we have
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Theorem 2.12. Let F be a number field with r1 real places and r2 complex places. We
put

ZF (s) = G1(s)r1G2(s)r2ζF (s),

where G1(s) = π−
s
2 Γ( s2), G2(s) = (2π)1−sΓ(s). Then ZF (s) is a meromorphic function

in the s-plan, holomorphic except for simple zeros at s = 0 and s = 1, and satisfies the
functional equation

ZF (s) = |∆F |
1
2
−sZF (1− s).

Its residues at s = 0 and s = 1 are respectively −
√
|∆F |Vol(I1F /F×) and Vol(I1F /F×).

Proof. We apply Tate’s theorem 2.10 to χ = | · |s, and f = ⊗fv with

fv =


e−πx

2
v if v is real;

e−πxvx̄v if v is complex;

1Ov if v is non-archimedean.

By the local computations in 1.12, we have

ζ(fv, | · |s) =


π−

s
2 Γ( s2) if v is real;

2π1−sΓ(s) if v is complex;

(Ndv)
− 1

2
1

1−Np−s if v is non-archimedean.

Therefore, we get

ζ(f, χ) =
∏
v∈Σ

ζ(fv, | · |s) = 2r2s|∆F |−
1
2ZF (s).

On the other hand, we have f̂ = ⊗vf̂v with f̂v = fv if v is real, f̂v(z) = 2fv(2z) if v is

complex, and f̂v = (Ndv)
− 1

2 1d−1
v

if v is non-archimedean. The local zeta functions are

ζ(f̂v, | · |1−s) =


π−

1−s
2 Γ(1−s

2 ) if v is real;

2s(2π)sΓ(1− s) if v is complex;

(Ndv)
−s 1

1−Nps−1 if v is non-archimedean.

Hence, we obtain

ζ(f̂ , | · |s) =
∏
v∈Σ

ζ(f̂v, | · |s) = 2r2s|∆F |−sZF (1− s).

The functional equation of ZF (s) follows immediately from ζ(f, | · |s) = ζ(f̂ , | · |1−s). The
resides of ZF (s) follows from the residues of ζ(f, | · |s) and the fact that f(0) = 1 and

f̂(0) = 2r2 |∆F |−
1
2 . �
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