NOTES ON TATE'S THESIS

YICHAO TIAN

The aim of this short note is to explain Tate's thesis [Ta50] on the harmonic analysis on Adèles and Idèles, the functional equations of Dedekind Zeta functions and Hecke L-series. For general reference on adèles and idèles, we refer the reader to [We74].

1. Local Theory

1.1. Let k be a local field of characteristic 0, i.e. \mathbb{R} , \mathbb{C} or a finite extension of \mathbb{Q}_p . If k is p-adic, we denote by $\mathcal{O} \subset k$ the ring of integers in $k, \mathfrak{p} \subset \mathcal{O}$ the maximal ideal, and $\varpi \in \mathfrak{p}$ a uniformizer of \mathcal{O} . If \mathfrak{a} is a fractional ideal of \mathcal{O} , we denote by $N\mathfrak{a} \in \mathbb{Q}$ the norm of \mathfrak{a} . So if $\mathfrak{a} \subset \mathcal{O}$ is an ideal, we have $N\mathfrak{a} = |\mathcal{O}/\mathfrak{a}|$. Let $|\cdot|: k \to \mathbb{R}_{\geq 0}$ be the normalized absolute value on k, i.e. for $x \in k$, we have

$$|x| = \begin{cases} |x|_{\mathbb{R}} & \text{if } k = \mathbb{R}; \\ |x|_{\mathbb{C}}^2 & \text{if } k = \mathbb{C}; \\ N(\mathfrak{p})^{-\operatorname{ord}_{\varpi}(x)} & \text{if } k \text{ is } p\text{-adic and } x = u\varpi^{\operatorname{ord}_{\varpi}(x)} \text{ with } u \in \mathcal{O}^{\times}. \end{cases}$$

We denote by k^+ the additive group of k. Consider the unitary character $\psi: k^+ \to \mathbb{C}^{\times}$ defined as follows:

(1.1.1)
$$\psi(x) = \begin{cases} e^{-2\pi i x} & \text{if } k = \mathbb{R}; \\ e^{-2\pi i (x+\bar{x})} & \text{if } k = \mathbb{C}; \\ e^{2\pi i \lambda(\operatorname{Tr}_{k/\mathbb{Q}_p}(x))} & \text{if } k \text{ is } p\text{-adic}, \end{cases}$$

where $\lambda(\cdot)$ means the decimal part of a *p*-adic number. For any $\xi \in k$, we note by ψ_{ξ} the additive character $x \mapsto \psi(x\xi)$ of k^+ . Note that if k is non-archimedean, $\psi(x) = 1$ if and only if $x \in \mathfrak{d}^{-1}$, where \mathfrak{d} is the different of k over \mathbb{Q}_p , i.e.

$$x \in \mathfrak{d}^{-1} \Leftrightarrow \operatorname{Tr}_{k/\mathbb{Q}_p}(xy) \in \mathbb{Z}_p \quad \forall y \in \mathcal{O}.$$

Proposition 1.2. The map $\Psi : \xi \mapsto \psi_{\xi}$ defines an isomorphism of topological groups $k^+ \simeq \widehat{k^+}$, where $\widehat{k^+}$ denotes the group of unitary characters of k^+ .

Proof. If $k = \mathbb{R}$ or \mathbb{C} , this is well known in classical Fourier analysis. We assume here k is non-archimedean.

(1) It's clear that Ψ is a homomorphism of groups. We show first that Ψ is continuous (at 0). If $\xi \in \mathfrak{p}^m$, then ψ_{ξ} is trivial on $\mathfrak{d}^{-1}\mathfrak{p}^{-m}$. Since the subsets

$$U_m = \{ \chi \in k^+ \mid \chi \text{ is trivial on } \mathfrak{d}^{-1} \mathfrak{p}^{-m} \}$$

form a fundamental system of open neighborhoods of 0 in $\widehat{k^+}$, the continuity of Ψ follows immediately.

(2) Next, we show that $\Psi : k \to \Psi(k) \subset \hat{k}$ is homoemorphism of k onto its image. We need to check that if $(x_n)_{n\geq 1} \in k$ is a sequence such that $\psi_{x_n} \to 1$ uniformly for all compact subsets of k, then x_n converges to 1 in k. Consider the compact open subgroup \mathfrak{p}^{-m} for $m \in \mathbb{Z}$. Then for any $1/2 > \epsilon > 0$, there exists an integer N > 0 such that $|\psi(x_n z) - 1| < \epsilon$ for all n > N and $z \in \mathfrak{p}^{-m}$. But $x_n \mathfrak{p}^{-m}$ is a subgroup and the open ball $B(1, \epsilon) \subset \mathbb{C}^{\times}$ contains no subgroup of S^1 . Hence we have $\psi(x_n z) = 1$ for all $z \in \mathfrak{p}^{-m}$, so $x_n \in \mathfrak{d}^{-1}\mathfrak{p}^m$.

(3) The image of Ψ is dense in k. Let H be the image of Ψ , and $\overline{H} \subset \hat{k}$ be its closure. Then we have

$$\bar{H}^{\perp} = \{ x \in \widehat{k} \simeq k \mid \chi(x) = 1, \ \forall \chi \in H \}$$
$$= \{ x \in k \mid \psi(x\xi) = 1, \ \forall \xi \in k \} = \{ 0 \}$$

Hence, we have $\overline{H} = \widehat{k}$.

(4) The proof of the Proposition will be complete by the Lemma 1.3 below.

Lemma 1.3. Let G be a locally compact topological group, $H \subset G$ be a locally compact subgroup. Then H is closed in G.

Proof. Let h_n be a sequence in H that converges to $g \in G$. We need to prove that $g \in H$. Let $(U_r)_{r\geq 0}$ be a fundamental system of compact neighborhoods of 0. We have $\bigcap_{r\geq 0} U_r = \{0\}$. Then for any r, there exists an integer $N_r > 0$ such that $h_n \in g + U_r$ for all $n \geq N_r$. Up to modifying U_r , we may assume $h_n - h_m \in H \cap U_{r-1}$ for any $n, m \in N_r$. Note that $H \cap U_{r-1}$ is also compact by the local compactness of H. Up to replacing $\{U_r\}_{r\geq 0}$ by a subsequence, we may choose m_r for each integer r such that

$$h_{m_{r+1}} + U_r \cap H \subset h_{m_r} + U_{r-1} \cap H.$$

By compactness, the intersection

$$\bigcap_{r\geq 1} (h_{m_r} + U_{r-1} \cap H)$$

must contain an element $h \in H$. It's easy to see that h = g, since $\bigcap_{r \ge 0} U_r = \{0\}$.

1.4. Now we choose a Haar measure dx on k as follows. If $k = \mathbb{R}$, we take dx to be the usual Lebesgue measure on \mathbb{R} ; if $k = \mathbb{C}$, we take dx to be twice of the usual Lebesgue measure on \mathbb{C} ; and if k is non-archimedean, we normalize the measure by $\int_{\mathcal{O}} dx = (N\mathfrak{d})^{-\frac{1}{2}}$. Let $L^1(k,\mathbb{C})$ be the space of complex valued absolutely integrable functions on k. For $f \in L^1(k,\mathbb{C})$, we define the Fourier transform of f to be

(1.4.1)
$$\hat{f}(\xi) = \int_{k} f(x)\psi(x\xi)\mathrm{d}x.$$

Let $\mathcal{S}(k)$ be the space of Schwartz functions on k, i.e.

$$\mathcal{S}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) \mid \forall n, m \in \mathbb{N}, \ |x^{n} \frac{d^{m} f}{dx^{m}}| \text{ is bounded} \};$$

 $\mathbf{2}$

we have a similar definition for $k = \mathbb{C}$; and if k is p-adic, $\mathcal{S}(k)$ consists of locally constant and compactly supported functions on k. In all these cases, the space $\mathcal{S}(k)$ is dense in $L^1(k, \mathbb{C})$.

Proposition 1.5. The map $f \mapsto \hat{f}$ preserves S(k), and we have $\hat{f}(x) = f(-x)$ for any $f \in S(k)$.

The following lemma will be useful in the sequels.

Lemma 1.6. Assume k is non-archimedean. The local Fourier transform of $f = 1_{a+\mathfrak{p}^{\ell}}$, the characteristic function of the set $a + \mathfrak{p}^{\ell}$, is

(1.6.1)
$$\hat{f}(x) = \psi(ax)(N\mathfrak{d})^{-\frac{1}{2}}(N\mathfrak{p})^{-\ell}\mathbf{1}_{\mathfrak{d}^{-1}\mathfrak{p}^{-\ell}}.$$

In particular, we have $\hat{f} \in \mathcal{S}(k)$.

Proof. By definition, we have

$$\hat{f}(x) = \int_{a+\mathfrak{p}^{\ell}} \psi(xy) \mathrm{d}y = \psi(ax) \int_{\mathfrak{p}^{\ell}} \psi(xy) \mathrm{d}y.$$

The lemma follows immediately from

$$\int_{\mathfrak{p}^{\ell}} \psi(xy) \mathrm{d}y = \begin{cases} (N\mathfrak{d})^{-\frac{1}{2}} (N\mathfrak{p})^{-\ell} & \text{if } x \in \mathfrak{d}^{-1}\mathfrak{p}^{-\ell} \\ 0 & \text{otherwise.} \end{cases}$$

Proof of 1.5. If k is archimedean, this is well-known in classical analysis. Consider here the non-archimedean case. Since any compactly supported locally constant function on k is a linear combination of functions $1_{a+\mathfrak{p}^{\ell}}$. We may assume thus $f = 1_{a+\mathfrak{p}^{\ell}}$. The first part of the proposition follows from the previous lemma. For the second part, we have

$$\begin{split} \hat{f}(x) &= \int_{k} \hat{f}(y)\psi(xy)\mathrm{d}y = (N\mathfrak{d})^{-\frac{1}{2}}(N\mathfrak{p})^{-\ell} \int_{\mathfrak{d}^{-1}\mathfrak{p}^{-\ell}} \psi((x+a)y)\mathrm{d}y \\ &= (N\mathfrak{d})^{-\frac{1}{2}}(N\mathfrak{p})^{-\ell}(N\mathfrak{d})^{-\frac{1}{2}}(N\mathfrak{p})^{\mathrm{ord}_{\varpi}(\mathfrak{d})+\ell} \mathbf{1}_{-a+\mathfrak{p}^{\ell}} \\ &= \mathbf{1}_{-a+\mathfrak{p}^{\ell}}. \end{split}$$

In the third equality above, we have used (1.6.1) with ℓ replaced by $-\operatorname{ord}_{\varpi}(\mathfrak{d}) - \ell$ and x replaced by x + a. Now it's clear that $\hat{f}(x) = f(-x)$.

1.7. Now consider the multiplicative group k^{\times} , and put

$$U = \{ x \in k^{\times} \mid |x| = 1 \}.$$

So $U = \{\pm 1\}$ if $k = \mathbb{R}$, $U = S^1$ is the group of unit circle if $k = \mathbb{C}$, and $U = \mathcal{O}^{\times}$ if k is p-adic. We have

$$k^{\times}/U = \begin{cases} \mathbb{R}_{+}^{\times} & \text{if } k = \mathbb{R}, \mathbb{C}; \\ \mathbb{Z} & \text{if } k \text{ is } p\text{-adic.} \end{cases}$$

Recall that a quasi-character of k^{\times} is a continuous homomorphism $\chi : k^{\times} \to \mathbb{C}^{\times}$. We say χ is a (unitary) character if $|\chi(x)| = 1$ for all $x \in k^{\times}$, and χ is unramified if $\chi|_U$ is trivial. So χ is unramified if and only if there is $s \in \mathbb{C}$ such that $\chi(x) = |x|^s$. Note that such an s is determined by χ if $k = \mathbb{R}$ or \mathbb{C} , and determined up to $2\pi i/\log(N\mathfrak{p})$ if k is p-adic.

Lemma 1.8. For any quasi-character χ of k^{\times} , there exists a unique unitary character χ_0 of k^{\times} such that $\chi = \chi_0 |\cdot|^s$.

Proof. For any $x \in k^{\times}$, one can write uniquely $x = \tilde{x}\rho$ where $\tilde{x} \in U$ and $\rho \in \mathbb{R}_{+}^{\times}$ if $k = \mathbb{R}$ or \mathbb{C} , and $\rho \in \varpi^{\mathbb{Z}}$ if k is non-archimedean. We define χ_0 as $\chi_0(x) = (\chi|_U)(\tilde{x})$. One checks easily that the quasi-character χ/χ_0 is unramified.

Let χ be a quasi-character of k^{\times} , and $s \in \mathbb{C}$ be the number appearing in the Lemma above. Note that $\sigma(\chi) = \Re(s)$ is uniquely determined by χ , and we call it the *exponent* of χ . Let $\nu \in \mathbb{Z}_{\geq 0}$ be the minimal integer such that $\chi|_{1+\mathfrak{p}^{\nu}}$ is trivial. We call the ideal $\mathfrak{f}_{\chi} = \mathfrak{p}^{\nu}$ conductor of χ . So the conductor of χ is \mathcal{O} if and only if χ is unramified.

1.9. We choose the Haar measure on k^{\times} to be $d^{\times}x = \delta(k)dx/|x|$, where

(1.9.1)
$$\delta(k) = \begin{cases} 1 & \text{if } k = \mathbb{R}, \mathbb{C}; \\ \frac{N\mathfrak{p}}{N\mathfrak{p}-1} & \text{if } k \text{ is non-archimedean.} \end{cases}$$

If k is non-archimedean, the factor $\delta(k)$ is justified by the fact that

$$\int_U \mathrm{d}x = (N\mathfrak{d})^{-\frac{1}{2}}$$

Definition 1.10. For $f \in \mathcal{S}(k)$, we put

$$\zeta(f,\chi) = \int_{k^{\times}} f(x)\chi(x) \,\mathrm{d}^{\times}x,$$

which converges for any quasi-character χ with $\sigma(\chi) > 0$. We call $\zeta(f, \chi)$ the local zeta function associated with f (in quasi-characters).

Proposition 1.11. For any $f, g \in \mathcal{S}(k)$, we have

$$\zeta(f,\chi)\zeta(\hat{g},\hat{\chi}) = \zeta(\hat{f},\hat{\chi})\zeta(g,\chi),$$

where \hat{f}, \hat{g} are Fourier transforms of f and g, and $\hat{\chi} = |\cdot|\chi^{-1}$ for any quasi-character χ with $0 < \sigma(\chi) < 1$.

Proof.

$$\begin{split} \zeta(f,\chi)\zeta(\hat{g},\hat{\chi}) &= \int_{k^{\times}} \left(\int_{k^{\times}} f(x)\hat{g}(xy)|x|\mathrm{d}^{\times}x \right) \chi(y^{-1})|y|\mathrm{d}^{\times}y \\ &= \delta(k) \int_{k^{\times}} \left(\int_{k} \int_{k} f(x)g(z)\psi(xyz)\mathrm{d}z\mathrm{d}x \right) \chi(y^{-1})|y|\mathrm{d}^{\times}y \end{split}$$

To finish the proof of the Proposition, it suffices to note that the expression above is symmetric for f and g.

We endow the set of quasi-characters with a structure of complex manifold such that for any fixed quasi-character χ the map $s \mapsto \chi | \cdot |^s$ induces an isomorphism of complex manifolds from \mathbb{C} to a connected component of the set of quasi-characters.

Theorem 1.12. For any $f \in S(k)$, the function $\zeta(f, \chi)$ can be continued to a meromorphic function on the space of all quasi-characters. Moreover, it satisfies the functional equation

(1.12.1)
$$\zeta(f,\chi) = \rho(\chi)\zeta(f,\hat{\chi}),$$

where $\rho(\chi)$ is a meromorphic function of χ independent of f given as follows:

(1) If
$$k = \mathbb{R}$$
, then $\chi(x) = |x|^s$ or $\chi(x) = \operatorname{sgn}(x)|x|^s$ for some $s \in \mathbb{C}$. We have

$$\rho(|\cdot|^s) = 2^{1-s}\pi^{-s}\cos(\frac{\pi s}{2})\Gamma(s), \quad \rho(\operatorname{sgn}|\cdot|^s) = i2^{1-s}\pi^{-s}\sin(\frac{\pi s}{2})\Gamma(s).$$

(2) If $k = \mathbb{C}$, then there exists $n \in \mathbb{Z}$ and $s \in \mathbb{C}$ such that $\chi = \chi_n |\cdot|^s$ where χ_n is the unitary character $\chi_n(re^{i\theta}) = e^{in\theta}$. We have

$$\rho(\chi_n|\cdot|^s) = i^{|n|} \frac{(2\pi)^{1-s} \Gamma(s + \frac{|n|}{2})}{(2\pi)^s \Gamma(1 - s + \frac{|n|}{2})}.$$

(3) Assume k is p-adic. If χ is unramified, then

$$\rho(|\cdot|^s) = (N\mathfrak{d})^{s-\frac{1}{2}} \frac{1 - (N\mathfrak{p})^{s-1}}{1 - N\mathfrak{p}^{-s}}$$

If $\chi = \chi_0 |\cdot|^s$ is ramified, where χ_0 is unitary with $\chi_0(\varpi) = 1$ as in Lemma 1.8, then one has

$$\rho(\chi_0|\cdot|^s) = N(\mathfrak{df}_\chi)^{s-\frac{1}{2}}\rho_0(\chi_0)$$

with

$$\rho_0(\chi_0) = N(\mathfrak{f}_{\chi})^{-\frac{1}{2}} \sum_x \chi_0(-x) \psi(\frac{x}{\varpi^{\operatorname{ord}_{\varpi}}(\mathfrak{d}\mathfrak{f}_{\chi})})$$

where x runs over a set of representatives of $\mathcal{O}^{\times}/(1+\mathfrak{f}_{\chi})$.

Proof. By Proposition 1.11, the function $\rho(\chi) = \frac{\zeta(f,\chi)}{\zeta(\hat{f},\hat{\chi})}$ is independent of f. This proves the functional equation (1.12.1). Note that $\zeta(f,\chi)$ is well defined if $\sigma(\chi) > 0$, and $\zeta(\hat{f},\hat{\chi})$ is well defined if $\sigma(\chi) < 1$. Therefore, once we show that $\rho(\chi)$ is meromorphic as in the statement, it will follow from the functional equation (1.12.1) that $\zeta(f,\chi)$ can be continued to a meromorphic function in χ . It remains to compute $\rho(\chi)$ by choosing special functions $f \in S(k)$.

(1) Assume $k = \mathbb{R}$. If $\chi = |\cdot|^s$, we choose $f = e^{-\pi x^2}$. We have

$$\zeta(f, |\cdot|^s) = \int_{\mathbb{R}^{\times}} e^{-\pi x^2} |x|^s \mathrm{d}^{\times} x = 2 \int_0^{+\infty} e^{-\pi x^2} x^{s-1} \mathrm{d} x = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}).$$

On the other hand,

(1.12.2)
$$\hat{f}(y) = \int_{\mathbb{R}} e^{-\pi (x^2 + 2ixy)} dx = e^{-y^2} \int_{\mathbb{R}} e^{-\pi (x+yi)^2} dx.$$

Using the well-known fact that

$$\int_{\mathbb{R}} e^{-\pi (x+yi)^2} \mathrm{d}x = \int_{\mathbb{R}} e^{-\pi x^2} \mathrm{d}x = 1,$$

we get $\hat{f} = f$. Hence, we have $\zeta(\hat{f}, |\cdot|^{1-s}) = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2})$ and

$$\rho(|\cdot|^{s}) = \frac{\pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})}{\pi^{-\frac{1-s}{2}}\Gamma(\frac{1-s}{2})} = \pi^{-s}\sqrt{\pi}\frac{\Gamma(\frac{s}{2})\Gamma(\frac{s+1}{2})}{\Gamma(\frac{1-s}{2})\Gamma(\frac{1+s}{2})}$$

Now the formula for $\rho(|\cdot|^s)$ follows from the properties of Gamma functions

$$\Gamma(\frac{s}{2})\Gamma(\frac{s+1}{2}) = 2^{1-s}\sqrt{\pi}\Gamma(s), \quad \Gamma(\frac{1-s}{2})\Gamma(\frac{1+s}{2}) = \frac{\pi}{\sin(\frac{\pi(1+s)}{2})}.$$

If $\chi = \operatorname{sgn} |\cdot|^s$, we take $f = xe^{-\pi x^2}$. A similar computation shows that

$$\zeta(f, \mathrm{sgn}|\cdot|^s) = \pi^{-\frac{s+1}{2}} \Gamma(\frac{s+1}{2}).$$

Taking derivatives with respect to y in (1.12.2), we get $\hat{f} = -if$. So we have

$$\zeta(\hat{f}, \operatorname{sgn}|\cdot|^{1-s}) = -i\pi^{\frac{s}{2}-1}\Gamma(1-\frac{s}{2}).$$

Therefore, we get

$$\rho(\text{sgn}|\cdot|^{s}) = \frac{\pi^{-\frac{s+1}{2}}\Gamma(\frac{s+1}{2})}{-i\pi^{\frac{s}{2}-1}\Gamma(1-\frac{s}{2})} = i\pi^{-s}\sqrt{\pi}\frac{\Gamma(\frac{s+1}{2})\Gamma(\frac{s}{2})}{\Gamma(1-\frac{s}{2})\Gamma(\frac{s}{2})} = i2^{1-s}\pi^{-s}\sin(\frac{\pi s}{2})\Gamma(s).$$

(2) Assume $k = \mathbb{C}$. If $\chi = |\cdot|^s$, we take $f(z) = e^{-\pi(z\overline{z})}$. The local zeta function associated with f is

$$\begin{split} \zeta(f,|\cdot|^{s}) &= \int_{\mathbb{C}^{\times}} e^{-\pi z \bar{z}} (z \bar{z})^{s} \mathrm{d}^{\times} z \\ &= \int_{\theta=0}^{2\pi} \int_{r=0}^{+\infty} e^{-\pi r^{2}} r^{2s} \frac{2r dr d\theta}{r^{2}} \\ &= 4\pi \int_{0}^{+\infty} e^{-\pi r^{2}} r^{2s-1} dr \\ &= 4\pi \int_{0}^{+\infty} t^{s-\frac{1}{2}} e^{-\pi t} \frac{dt}{2\sqrt{t}} \quad (\text{set } t = r^{2}) \\ &= 2\pi^{1-s} \Gamma(s). \end{split}$$

The Fourier transform of f is

$$(1.12.3) \quad \hat{f}(z) = \int_{\mathbb{C}} e^{-\pi w \bar{w}} e^{-2\pi i (zw + \bar{z}\bar{w})} dw$$
$$= 2 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-\pi (u^2 + v^2)} e^{-4\pi i (ux - vy)} du dv \quad (\text{put } z = x + iy, w = u + iv)$$
$$= 2e^{-4\pi (x^2 + y^2)} \int_{-\infty}^{+\infty} e^{-\pi (u + 2ix)^2} du \int_{-\infty}^{+\infty} e^{-\pi (v - 2iy)^2} dv$$
$$= 2f(2z).$$

Therefore, one has $\zeta(\hat{f}, |\cdot|^{1-s}) = 2^{2s-1}\zeta(f, |\cdot|^{1-s}) = 2^{2s}\pi^s\Gamma(1-s)$, thus

$$\rho(|\cdot|^s) = (2\pi)^{1-2s} \frac{\Gamma(s)}{\Gamma(1-s)}.$$

Let $n \ge 1$ and $\chi = \chi_{-n} |\cdot|^s$. We put $f_n = z^n e^{-\pi(z\overline{z})}$. We compute first the local zeta function of f_n :

(1.12.4)
$$\zeta(f_n, \chi_{-n} |\cdot|^s) = \int_{\mathbb{C}^\times} z^n e^{-\pi (z\bar{z})} \chi_{-n}(z) (z\bar{z})^s \mathrm{d}^\times z$$
$$= \int_{\theta=0}^{2\pi} \int_{r=0}^{+\infty} e^{-\pi r^2} r^{2s+n} \frac{2r dr d\theta}{r^2}$$
$$= 4\pi \int_0^{+\infty} e^{-\pi r^2} r^{2s+n-1} dr$$
$$= 4\pi \int_0^{+\infty} e^{-\pi t} t^{s+\frac{n-1}{2}} \frac{dt}{2\sqrt{t}}$$
$$= 2\pi^{1-(s+\frac{n}{2})} \Gamma(s+\frac{n}{2}).$$

To find the Fourier transform of f_n , we consider the equality (1.12.3)

$$2e^{-4\pi(z\bar{z})} = \int_{\mathbb{C}} e^{-\pi(w\bar{w})} e^{-2\pi i(zw+\bar{z}\bar{w})} \mathrm{d}w.$$

Regarding z and \bar{z} as independent variables and applying $\frac{\partial^n}{\partial z^n}$, we get

$$2(-2i\bar{z})^n e^{-4\pi z\bar{z}} = \int_{\mathbb{C}} w^n e^{-\pi(w\bar{w})} e^{-2\pi i(zw+\bar{z}\bar{w})} \mathrm{d}w,$$

that is, $\hat{f}_n(z) = 2\bar{f}_n(2iz)$. A similar computation as (1.12.4) shows that

$$\zeta(\hat{f}_n(z), \hat{\chi}) = \zeta(2\bar{f}_n(2iz), \chi_n |\cdot|^{1-s}) = (-i)^n 2^{2s} \pi^{s-\frac{n}{2}} \Gamma(s+\frac{n}{2})$$

Therefore, we get

$$\rho(\chi_{-n}|\cdot|^s) = \frac{2\pi^{1-(s+\frac{n}{2})}\Gamma(s+\frac{n}{2})}{(-i)^n 2^{2s} \pi^{s-\frac{n}{2}}\Gamma(s+\frac{n}{2})} = i^n (2\pi)^{1-2s} \frac{\Gamma(s+\frac{n}{2})}{\Gamma(\frac{n}{2}+1-s)}.$$

The formulae for $\rho(\chi_n | \cdot |^s)$ can be proved in the same way by choosing $f = \bar{f}_n$.

(3) Assume k is p-adic. Consider first the case $\chi = |\cdot|^s$. We take $f = 1_{\mathcal{O}}$. In the proof of Proposition 1.5, we have seen that $\hat{f} = (N\mathfrak{d})^{-\frac{1}{2}}\mathfrak{1}_{\mathfrak{d}^{-1}}$. We have

$$\zeta(f,\chi) = \int_{\mathcal{O}-\{0\}} |x|^s \mathrm{d}^{\times} x.$$

As $\mathcal{O} - \{0\} = \coprod_{n=0}^{+\infty} \varpi^n \mathcal{O}^{\times}$, it follows that

 ζ

$$\zeta(f,\chi) = \sum_{n=0}^{+\infty} (N\mathfrak{p})^{-ns} \int_{\mathcal{O}^{\times}} \mathrm{d}^{\times} x = (N\mathfrak{d})^{-\frac{1}{2}} \frac{1}{1 - (N\mathfrak{p})^{-s}}$$

Similarly, using $\mathfrak{d}^{-1} - \{0\} = \coprod_{n=-\mathrm{ord}_{\varpi}(\mathfrak{d})}^{+\infty} \varpi^n \mathcal{O}^{\times}$, one obtains

$$\begin{aligned} (\hat{f}, \hat{\chi}) &= (N\mathfrak{d})^{-\frac{1}{2}} \int_{\mathfrak{d}^{-1} - \{0\}} |x|^{1-s} \mathrm{d}^{\times} x \\ &= (N\mathfrak{d})^{-\frac{1}{2}} \sum_{n=-\mathrm{ord}_{\varpi}(\mathfrak{d})}^{+\infty} (N\mathfrak{p})^{n(s-1)} \int_{\mathcal{O}^{\times}} \mathrm{d}^{\times} x \\ &= (N\mathfrak{d})^{-1} (N\mathfrak{p})^{\mathrm{ord}_{\varpi}(\mathfrak{d})(1-s)} \sum_{n=0}^{+\infty} N\mathfrak{p}^{n(s-1)} \\ &= (N\mathfrak{d})^{-s} \frac{1}{1 - N\mathfrak{p}^{s-1}}. \end{aligned}$$

The formula for $\rho(|\cdot|^s)$ follows immediately.

Now consider the case $\chi = \chi_0 |\cdot|^s$ with χ_0 ramified, unitary and $\chi_0(\varpi) = 1$. We take

$$f(x) = \psi(\frac{x}{\varpi^{\operatorname{ord}_{\varpi}}(\mathfrak{d}\mathfrak{f}_{\chi})}) 1_{\mathcal{O}}.$$

The local zeta function of f is

$$\begin{aligned} \zeta(f,\chi) &= \int_{\mathcal{O}-\{0\}} \psi(\frac{x}{\varpi^{\operatorname{ord}_{\varpi}}(\mathfrak{d}\mathfrak{f}_{\chi})})\chi_{0}(x)|x|^{s} \mathrm{d}^{\times}x \\ &= \sum_{n=0}^{+\infty} (N\mathfrak{p})^{-ns} \int_{\mathcal{O}^{\times}} \psi(\frac{x\varpi^{n}}{\varpi^{\operatorname{ord}_{\varpi}}(\mathfrak{d}\mathfrak{f}_{\chi})})\chi_{0}(x) \mathrm{d}^{\times}x \end{aligned}$$

We claim that

(1.12.5)
$$\int_{\mathcal{O}^{\times}} \psi(\frac{x\varpi^n}{\varpi^{\operatorname{ord}_{\varpi}(\mathfrak{d}\mathfrak{f}_{\chi})}})\chi_0(x) \mathrm{d}^{\times} x = 0 \quad \text{for } n \ge 1$$

Consider first the case $n \ge \operatorname{ord}_{\varpi}(f_{\chi})$. We have

$$\psi(\frac{x\varpi^n}{\varpi^{\operatorname{ord}_{\varpi}}(\mathfrak{d}\mathfrak{f}_{\chi})}) = 1$$
 as $\frac{x\varpi^n}{\varpi^{\operatorname{ord}_{\varpi}}(\mathfrak{d}\mathfrak{f}_{\chi})} \in \mathfrak{d}^{-1}.$

If S is a set of representatives of $\mathcal{O}^{\times}/(1+\mathfrak{f}_{\chi})$, the integral above is equal to

$$\int_{\mathcal{O}^{\times}} \chi_0(x) \mathrm{d}^{\times} x = \left(\int_{1+\mathfrak{f}_{\chi}} \mathrm{d}^{\times} x \right) \sum_{x \in S} \chi_0(x) = 0.$$

Assume $0 \le n \le \operatorname{ord}_{\varpi}(\mathfrak{f}_{\chi}) - 1$. For any $y \in 1 + \mathfrak{p}^{-n}\mathfrak{f}_{\chi}$, we have

$$\psi(\frac{xy\varpi^n}{\varpi^{\mathrm{ord}_\varpi}(\mathfrak{d}\mathfrak{f}_\chi)}) = \psi(\frac{x\varpi^n}{\varpi^{\mathrm{ord}_\varpi}(\mathfrak{d}\mathfrak{f}_\chi)}).$$

Therefore, if $S_n \subset S$ denotes a subset of representatives of $\mathcal{O}^{\times}/(1 + \mathfrak{p}^{-n}\mathfrak{f}_{\chi})$, we get

$$\begin{split} \int_{\mathcal{O}^{\times}} \psi(\frac{x\varpi^{n}}{\varpi^{\operatorname{ord}_{\varpi}(\mathfrak{d}\mathfrak{f}_{\chi})}})\chi_{0}(x)\mathrm{d}^{\times}x &= \left(\int_{1+\mathfrak{f}_{\chi}} \mathrm{d}^{\times}x\right)\sum_{x\in S}\chi_{0}(x)\psi(\frac{x\varpi^{n}}{\varpi^{\operatorname{ord}_{\varpi}(\mathfrak{d}\mathfrak{f}_{\chi})}}) \\ &= \left(\int_{1+\mathfrak{f}_{\chi}} \mathrm{d}^{\times}x\right)\sum_{x\in S_{n}}\chi_{0}(x)\psi(\frac{x\varpi^{n}}{\varpi^{\operatorname{ord}_{\varpi}(\mathfrak{d}\mathfrak{f}_{\chi})}})\sum_{y}\chi_{0}(y), \end{split}$$

where y runs over a set of representatives of $(1 + \mathfrak{p}^{-n}\mathfrak{f}_{\chi})/(1 + \mathfrak{f}_{\chi})$. Note that

$$\sum_{y} \chi_0(y) = \begin{cases} 0 & \text{if } 1 \le n \le \operatorname{ord}_{\varpi}(\mathfrak{f}_{\chi}), \\ 1 & \text{if } n = 0. \end{cases}$$

This proves the claim. It follows that (1.12.6)

$$\zeta(f,\chi) = \left(\int_{1+\mathfrak{f}_{\chi}} \mathrm{d}^{\times}x\right) \sum_{x \in S} \chi_{0}(x)\psi(\frac{x}{\varpi^{\mathrm{ord}_{\varpi}(\mathfrak{d}\mathfrak{f}_{\chi})}}) = \chi_{0}(-1)\left(\int_{1+\mathfrak{f}_{\chi}} \mathrm{d}^{\times}x\right)\left(N\mathfrak{f}_{\chi}\right)^{\frac{1}{2}}\rho_{0}(\chi_{0}),$$

where we have used the definition of ρ_0 in the last step. As in the proof of 1.5, the Fourier transform of f is

$$\begin{split} \hat{f}(x) &= \int_{\mathcal{O}} \psi(\frac{y}{\varpi^{\mathrm{ord}_{\varpi}}(\mathfrak{d}\mathfrak{f}_{\chi})})\psi(xy)\mathrm{d}y\\ &= \int_{\mathcal{O}} \psi(y(x + \frac{1}{\varpi^{\mathrm{ord}_{\varpi}}(\mathfrak{d}\mathfrak{f}_{\chi})}))\mathrm{d}y\\ &= (N\mathfrak{d})^{-\frac{1}{2}}\mathbf{1}_{-\varpi^{-\mathrm{ord}_{\varpi}}(\mathfrak{d}\mathfrak{f}_{\chi})+\mathfrak{d}^{-1}}. \end{split}$$

We get the local zeta function of \hat{f}

$$\begin{aligned} \zeta(\hat{f},\hat{\chi}) &= (N\mathfrak{d})^{-\frac{1}{2}} \int_{-\varpi^{-\operatorname{ord}_{\varpi}(\mathfrak{d}\mathfrak{f}_{\chi})} + \mathfrak{d}^{-1}} |x|^{1-s} \chi_{0}^{-1}(x) \mathrm{d}^{\times} x \\ &= (N\mathfrak{d})^{-\frac{1}{2}} (N\mathfrak{p})^{\operatorname{ord}_{\varpi}(\mathfrak{d}\mathfrak{f}_{\chi})(1-s)} \int_{-\varpi^{-\operatorname{ord}_{\varpi}(\mathfrak{d}\mathfrak{f}_{\chi})}(1+\mathfrak{f}_{\chi})} \chi_{0}^{-1}(x) \mathrm{d}^{\times} x \end{aligned}$$

Since $\chi_0^{-1}(-\varpi^{\operatorname{ord}_{\varpi}(\mathfrak{d}\mathfrak{f}_{\chi})}(1+y)) = \chi_0(-1)$ for any $y \in \mathfrak{f}_{\chi}$, we get

$$\zeta(\hat{f},\hat{\chi}) = \chi_0(-1)(N\mathfrak{d})^{-\frac{1}{2}}N(\mathfrak{d}\mathfrak{f}_{\chi})^{1-s} \left(\int_{1+\mathfrak{f}_{\chi}} \mathrm{d}^{\times}x\right).$$

It thus follows that

$$\rho(\chi_0|\cdot|^s) = \frac{\zeta(f,\chi_0|\cdot|^s)}{\zeta(\hat{f},\chi_0^{-1}|\cdot|^{1-s})} = N(\mathfrak{d}\mathfrak{f}_\chi)^{s-\frac{1}{2}}\rho_0(\chi_0).$$

_	-	

Remark 1.13. The number $\rho_0(\chi_0)$ in (3) is a generalization of (normalized) Gauss sum. By the same method as the classical case, we can show that $|\rho_0(\chi_0)| = 1$. In general, it's an interesting and difficult problem to find the exact argument of $\rho_0(\chi_0)$.

2. GLOBAL THEORY

Let F be a number field, \mathcal{O}_F be its ring of integers. Let Σ be the set of all places of F, and $\Sigma_f \subset \Sigma$ (resp. $\Sigma_\infty \subset \Sigma$) be the subset of non-archimedean (resp. archimedean) places. For $v \in \Sigma$, we denote by F_v the completion of F at v. Let dx_v be the self-dual Haar measure on F_v defined in 1.4. If v is finite, we denote by \mathcal{O}_v the ring of integers of F_v , by \mathfrak{p}_v the maximal ideal of \mathcal{O}_v , and we fix a uniformizer $\varpi_v \in \mathfrak{p}_v$. Let \mathbb{A}_F be the adèle ring of F, i.e. the subring of $\prod_{v \in \Sigma} F_v$ consisting of elements $x = (x_v)_v$ with $x_v \in \mathcal{O}_v$ for almost all v, and $\mathbb{A}_{F,f}$ be the ring of finite adèles. We choose the Haar measure on \mathbb{A}_F as $dx = \prod_v dx_v$. It induces a quotient Haar measure on \mathbb{A}_F/F .

Lemma 2.1. Under the notation above, we have $\int_{\mathbb{A}_F} dx = 1$.

Proof. By Chinese reminders theorem, we have $\mathbb{A}_F = F + \prod_{v \in \Sigma_f} \mathcal{O}_v \times \prod_{v \in \Sigma_\infty} F_v$. We get thus an isomorphism

$$\mathbb{A}_F/F \simeq (\prod_{v \in \Sigma_f} \mathcal{O}_v \times \prod_{v \in \Sigma_\infty} F_v)/\mathcal{O}_F$$

Hence we have

$$\int_{\mathbb{A}_F/F} \mathrm{d}x = \prod_{v \in \Sigma_f} \int_{\mathcal{O}_v} \mathrm{d}x_v \times \int_{(\prod_{v \in \Sigma_\infty} F_v)/\mathcal{O}_F} \prod_{v \in \Sigma_\infty} \mathrm{d}x_v$$
$$= \prod_{v \in \Sigma_f} (N\mathfrak{d}_v)^{-\frac{1}{2}} |\Delta_F|^{1/2},$$

where \mathfrak{d}_v denotes the different of F_v and Δ_F is the discriminant of F. If \mathfrak{d} denotes the different of F/\mathbb{Q} , then the lemma follows easily from the product formula:

$$|\Delta_F| = N\mathfrak{d} = \prod_{v \in \Sigma_f} N\mathfrak{d}_v.$$

For $v \in \Sigma$, let ψ_v be the additive character of the local field F_v defined in (1.1.1). It's easy to check that $\psi = \prod_{v \in \Sigma} \psi_v$ is trivial on additive group F, therefore it defines a character of the quotient \mathbb{A}_F/F . We call it the basic character of \mathbb{A}_F/F (or \mathbb{A}_F). For any $\xi \in \mathbb{A}_F$, let $\psi_{\xi} : \mathbb{A}_F \to \mathbb{C}^{\times}$ be the character given by $x \mapsto \psi(x\xi)$.

Proposition 2.2. The map $\Psi : \xi \mapsto \psi_{\xi}$ defines an isomorphism between \mathbb{A}_F and its topological dual $\widehat{\mathbb{A}}_F$. Moreover ψ_{ξ} is a character of \mathbb{A}_F/F if and only if $\xi \in F$, i.e. $\xi \mapsto \psi_{\xi}$ gives rise to an isomorphism of topological groups $F \simeq \widehat{\mathbb{A}_F/F}$.

Proof. The proof is similar to that of Proposition 1.2. One checks easily that Ψ is continuous and injective, and Ψ induces a homeomorphism of \mathbb{A}_F onto its image. Conversely, let $\psi' : \mathbb{A}_F \to \mathbb{C}^{\times}$ be a continuous character. The restriction $\psi'_v = \psi'|_{F_v}$ to the v-th local

component defines a continuous character of F_v . By Proposition 1.2, there exists $\xi_v \in F_v$ such that $\psi'_v = \psi_v(\xi_v \cdot \cdot)$. Since ψ' is continuous, there exists an open neighborhood $\prod_{v \in S} U_v \times \prod_{v \notin S} \mathcal{O}_v$ of 0 such that its image under ψ' lies in $B(1, 1/2) \subset \mathbb{C}^{\times}$. As B(1, 1/2)contains no non-trivial subgroups of S^1 , we see that for any $v \notin S$, we have $\xi_v \in \mathcal{O}_v$. This shows that $\xi = (\xi_v)_{v \in \Sigma} \in \mathbb{A}_F$, and $\psi' = \psi_{\xi}$. This shows that $\Psi : \mathbb{A}_F \to \widehat{\mathbb{A}}_F$ is a bijective continuous homomorphism of topological groups. To conclude that Ψ is an isomorphism, we need to show that if $\xi_n \in \mathbb{A}_F$ is a sequence such that $\psi_{\xi_n} \to 1$ in $\widehat{\mathbb{A}}_F$, we have $\xi_n \to 0$ in \mathbb{A}_F as $n \to +\infty$. Actually, for any compact subset $U_v \subset F_v$ with $U_v = \mathcal{O}_v$ for almost all v and any $\epsilon > 0$, we have $|\psi_{\xi_n} - 1|_{\prod_v U_v} < \epsilon$ for n sufficiently large. By Proposition 1.2, for any finite subset $S \subset \Sigma$ containing Σ_∞ , we can take $(U_v)_{v \in S}$ sufficiently large and $U_v = \mathcal{O}_v$ for $v \notin S$ such that $|\xi_n|_v < \epsilon$ for $v \in S$ and $\xi_n \in \mathcal{O}_v$ for $v \notin S$. This means that $\xi_n \to 0$ in \mathbb{A}_F .

For the second part, let $\Gamma \subset \mathbb{A}_F$ be the subgroup such that $\Psi(\Gamma) \subset \widehat{\mathbb{A}}_F$ consists of all characters trivial on F. It's clear that $F \subset \Gamma$ since ψ is trivial on F. To show that $\Gamma = F$, we consider first the case $F = \mathbb{Q}$. Let $\gamma \in \Gamma$. Since $\mathbb{A}_{\mathbb{Q}} = \mathbb{Q} + (-\frac{1}{2}, \frac{1}{2}] \times \prod_p \mathbb{Z}_p$, we can write $\gamma = b + c$, where $b \in \mathbb{Q}$, $c_{\infty} \in (-1/2, 1/2]$ and $c_p \in \mathbb{Z}_p$ for all primes p. Then we have

$$\mathbf{u} = \psi_{\gamma}(1) = \psi(\gamma) = \psi(b+c) = \psi(c) = e^{-2\pi i c_{\infty}}.$$

Hence we have $c_{\infty} = 0$. Moreover, for any prime p and any integer $n \ge 0$, we deduce from

$$1 = \psi_{\gamma}(\frac{1}{p^n}) = \psi(\frac{1}{p^n}(b+c)) = e^{2\pi i \lambda(\frac{c_p}{p^n})}$$

that $c_p \in p^n \mathbb{Z}_p$, i.e. we have $c_p = 0$. This shows $\gamma = b$, and hence $\Gamma = \mathbb{Q}$. In the general case, we note that the basic character of \mathbb{A}_F is the composition of that on $\mathbb{A}_{\mathbb{Q}}$ with the trace map $\operatorname{Tr}_{F/\mathbb{Q}} : \mathbb{A}_F \to \mathbb{A}_{\mathbb{Q}}$. The following lemma will conclude the proof. \Box

Lemma 2.3. Let $x = (x_v)_{v \in \Sigma} \in \mathbb{A}_F$ such that $\operatorname{Tr}_{F/\mathbb{Q}}(xy) \in \mathbb{Q} \subset \mathbb{A}_\mathbb{Q}$ for all $y \in F$. Then we have $x \in F$.

Proof. Let $(e_i)_{1 \leq i \leq d}$ be a basis of F/\mathbb{Q} , and $(e_i^*)_{1 \leq i \leq d}$ be the dual basis with respect to the perfect pairing $F \times F \to \mathbb{Q}$ given by $(x, y) \mapsto \operatorname{Tr}_{F/\mathbb{Q}}(xy)$. For any place $p \leq \infty$ of \mathbb{Q} , we have a canonical isomorphism of \mathbb{Q}_p -algebras

$$F \otimes \mathbb{Q}_p \simeq \prod_{v|p} F_v.$$

We put $x_p = (x_v)_{v|p} \in \prod_{v|p} F_v$. Then we can write $x_p = \sum_{i=1}^d a_{p,i}e_i$ with $a_{p,i} \in \mathbb{Q}_p$. As $\operatorname{Tr}_{F/\mathbb{Q}}(xe_i^*) \in \mathbb{Q} \subset \mathbb{A}_\mathbb{Q}$ for any *i*, we deduce that $a_{p,i} \in \mathbb{Q}$ and it's independent of *p*. This shows that $x \in F$.

Let $\mathcal{S}(\mathbb{A}_F)$ be the space of Schwartz functions on \mathbb{A}_F , i.e. the space of finite linear combinations of functions on \mathbb{A}_F of the form $f = \prod_v f_v$, where $f_v \in \mathcal{S}(F_v)$ and $f_v = 1_{\mathcal{O}_v}$ for almost all v. For any $f \in \mathcal{S}(\mathbb{A}_F)$, we define the Fourier transform of f to be

(2.3.1)
$$\hat{f}(\xi) = \int_{\mathbb{A}_F} f(x)\psi(x\xi)\mathrm{d}x.$$

Proposition 2.4. (a) The Fourier transform $f \mapsto \hat{f}$ preserves the space $\mathcal{S}(\mathbb{A}_F)$, and $\hat{f}(x) = f(-x)$.

(b) If $f = \bigotimes_v f_v$ with $f_v \in \mathcal{S}(F_v)$ and $f_v = 1_{\mathcal{O}_v}$ for almost all v. Then $\hat{f} = \bigotimes_v \hat{f}_v$, where \hat{f}_v is the local Fourier transform (1.4.1) of f_v .

(c) For any $f \in \mathcal{S}(\mathbb{A})$, the infinite sum $\sum_{x \in F} |f(x)|$ converges, and we have the Poisson formulae

(2.4.1)
$$\sum_{x \in F} f(x) = \sum_{\xi \in F} \hat{f}(\xi).$$

Proof. Statement (a) is a direct consequence of (b), which in turn follows from the local computations in the proof of 1.5. Now we start to prove (c). We may assume $f = \bigotimes_v f_v$ with $f_v \in \mathcal{S}(F_v)$ and $f_v = 1_{\mathcal{O}_v}$ for almost all v. Then there exists an open compact subgroup $U \subset \mathbb{A}_f$ such that $\operatorname{Supp}(f) \subset U \times \prod_{v \in \Sigma_\infty} F_v$. Put $\mathcal{O}_U = F \cap (U \times \prod_{v \in \Sigma_\infty} F_v)$. This is a lattice in F. Each individual term in the summation $\sum_{x \in F} f(x)$ is non-zero only if $x \in \mathcal{O}_U$. Write $f = f^{\infty} f_{\infty}$, where $f^{\infty} = \bigotimes_{v \in \Sigma_f} f_v$ and $f_{\infty} = \bigotimes_{v \in \Sigma_\infty} f_v$. Then there exists a constant C > 0 such that $|f^{\infty}(x)| < C$ for all $x \in U$. Hence, we have

$$\sum_{x \in F} |f(x)| = \sum_{x \in \mathcal{O}_U} |f(x)| < C \sum_{x \in \mathcal{O}_U} |f_\infty(x)|$$

By classical analysis, the sum on the right hand side is convergent. This proves the first part of (c). It remains to show Poisson's summation formula (2.4.1). Consider the function $g(x) = \sum_{y \in F} f(x + y)$, which converges for any $x \in \mathbb{A}_F$ by the first part of (c). As g(x)is invariant under translation of F, we regard g(x) as a function on \mathbb{A}_F/F . Its Fourier transform of g(x) is

$$\hat{g}(\xi) = \int_{\mathbb{A}_F/F} g(x)\psi(x\xi)dx \quad \text{(for } \xi \in F\text{)}$$
$$= \int_{\mathbb{A}_F} f(x)\psi(x\xi)dx = \hat{f}(\xi).$$

By the Fourier inverse formulae (a), we have

$$g(x) = \sum_{\xi \in F} \hat{g}(\xi)\psi(-x\xi).$$

The formulae (2.4.1) follows by setting x = 0.

2.5. Let $\mathbb{I}_F = \mathbb{A}_F^{\times}$ be the multiplicative group of idèles of F, i.e. the subgroup of $\prod_{v \in \Sigma} F_v^{\times}$ consisting of elements $x = (x_v)_v$ with $x_v \in \mathcal{O}_v^{\times}$ for almost all v, and \mathbb{I}_F^1 be the subgroup of \mathbb{I}_F of idèles with norm 1. The diagonal embedding $F^{\times} \hookrightarrow \mathbb{I}_F^1$ identifies F^{\times} with a discrete subgroup of \mathbb{I}^1 for the induced restricted product topology on \mathbb{I}_F^1 . A fundamental theorem in the theory of idèles says that the quotient $\mathbb{I}_F^1/F^{\times}$ is compact [We74, IV §4 Thm.6]. We consider the Haar measure $d^{\times}x = \prod_v d^{\times}x_v$ on \mathbb{I}_F , where $d^{\times}x_v$ is the local Haar measure on F_v^{\times} considered in 1.9. We use the same notation for the induced Haar measures on $\mathbb{I}_F^1/F^{\times}$.

12

Proposition 2.6. Under the notation above, we have

$$\operatorname{Vol}(\mathbb{I}_{F}^{1}/F^{\times}) = \int_{\mathbb{I}_{F}^{1}/F^{\times}} \mathrm{d}^{\times}x = \frac{2^{r_{1}}(2\pi)^{r_{2}}hR}{|\Delta_{F}|^{1/2}w},$$

where r_1 (resp. r_2) is the number of real places (resp. complex places) of F, h is the class number of F, Δ_F is the discriminant, R is the regulator, and w denotes the number of roots of unity in F.

Proof. Note first that $\operatorname{Vol}(\mathbb{I}_F^1/F^{\times})$ is finite, since $\mathbb{I}_F^1/F^{\times}$ is compact. For each $x = (x_v)_{v \in \Sigma} \in \mathbb{I}_F$, we denote by $\operatorname{Div}(x) = \prod_{v \in \Sigma_f} \mathfrak{p}_v^{\operatorname{ord}_v(x_v)}$ be the fractional ideal associated with x. Then Div induces a short exact sequence

$$0 \to (\prod_{v \in \Sigma_f} \mathcal{O}_v^{\times} \times (\mathbb{R}^{\times})^{r_1} \times (\mathbb{C}^{\times})^{r_2}) \times F^{\times} \to \mathbb{I}_F \to \mathrm{Cl}_F \to 0,$$

where Cl_F denotes the class group of F. Let Ω be the subgroup of $(\mathbb{R}^{\times})^{r_1} \times (\mathbb{C}^{\times})^{r_2}$ with product of absolute values $\prod_{i=1}^{r_1} |x_i| \times \prod_{i=1}^{r_2} |z_i|_{\mathbb{C}} = 1$. The the exact sequence above induces a similar exact sequence

$$0 \to (\prod_{v \in \Sigma_f} \mathcal{O}_v^{\times} \times \Omega) \times F^{\times} \to \mathbb{I}_F^1 \to \mathrm{Cl}_F \to 0.$$

Therefore, one gets

$$\int_{\mathbb{I}_{F}^{1}/F^{\times}} \mathrm{d}^{\times}x^{\times} = h \int_{(\prod_{v} \mathcal{O}_{v}^{\times} \times \Omega)/(\prod_{v} \mathcal{O}_{v}^{\times} \times \Omega) \cap F^{\times}} \mathrm{d}^{\times}x.$$

Let U_F denote the group of units of F. We have $(\prod_v \mathcal{O}_v^{\times} \times \Omega) \cap F^{\times} = U_F$, and hence

$$\int_{(\prod_v \mathcal{O}_v^{\times} \times \Omega)/F^{\times} \cap (\prod_v \mathcal{O}_v^{\times} \times \Omega)} = (\prod_{v \in \Sigma_f} \int_{\mathcal{O}_v^{\times}} \mathrm{d}x_v^{\times}) \times \int_{\Omega/U_F} \mathrm{d}^{\times}x = \prod_{v \in \Sigma_f} N\mathfrak{d}_v^{-\frac{1}{2}} \int_{\Omega/U_F} \mathrm{d}^{\times}x.$$

In view of the product formula $\prod_{v \in \Sigma_f} N\mathfrak{d}^{-\frac{1}{2}} = |\Delta_F|^{-\frac{1}{2}}$, to complete the proof, it suffices to prove that

(2.6.1)
$$\int_{\Omega/U_F} d^{\times} x = \frac{2^{r_1} (2\pi)^{r_2} R}{w}.$$

Consider the map

$$Log: (\mathbb{R}^{\times})^{r_1} \times (\mathbb{C}^{\times})^{r_2} \to \mathbb{R}^{r_1 + r_2}
((x_i)_{1 \le i \le r_1}, (z_j)_{1 \le j \le r_2}) \mapsto ((\log |x_i|)_{1 \le i \le r_1}, (\log |z_j|^2)_{1 \le j \le r_2}).$$

Let S^1 be the unit circle subgroup of \mathbb{C}^{\times} , and V be the subspace of $\mathbb{R}^{r_1+r_2}$ defined by the linear equation $\sum_{i=1}^{r_1} x_i + \sum_{j=1}^{r_2} y_j = 0$. Then the map Log induces a short exact sequence of abelian groups

$$0 \to \{\pm 1\}^{r_1} \times (S^1)^{r_2} \to \Omega \xrightarrow{\text{Log}} V \to 0.$$

If μ_F denotes the group of roots of unity in F, we have $(\{\pm 1\}^{r_1} \times (S^1)^{r_2}) \cap U_F = \mu_F$. Therefore, one obtains

$$\int_{\Omega/U_F} \mathrm{d}^{\times} x = \left(\int_{\{\pm 1\}^{r_1} \times (S^1)^{r_2}/\mu_F} \mathrm{d}^{\times} x\right) \times \left(\int_{V/\mathrm{Log}(U_F)} \mathrm{d}^{\times} x\right).$$

By the definition of the Haar measure on \mathbb{I}_F , the induced measure on $\Omega \subset (\mathbb{R}^{\times})^{r_1} \times (\mathbb{C}^{\times})^{r_2}$ is determined as follows. On each copy of \mathbb{R}^{\times} , the measure is given by $d^{\times}x = \frac{dx}{|x|}$, where dx is the usual Lebesgue measure on \mathbb{R} ; on each copy of \mathbb{C}^{\times} , the measure is given by

$$\mathbf{d}^{\times} z = 2 \frac{dx \wedge dy}{|z|^2} = \frac{d(r^2)}{r^2} \wedge d\theta,$$

where $z = x + iy = re^{i\theta}$. Therefore, the Haar measure on \mathbb{I}_F induces the usual Lebesgue measure on $\mathrm{Log}(\Omega) = V$, and the measure $\prod_{j=1}^{r_2} d\theta_j$ on $(S^1)^{r_2}$.¹ It follows that

$$\int_{\{\pm 1\}^{r_1} \times (S^1)^{r_2}/\mu_F} \mathrm{d}^{\times} x = \frac{2^{r_1} (2\pi)^{r_2}}{w}.$$

By the definition of the regulator, we have $R = \int_{V/\text{Log}(U_F)} dx$. Now the formula (2.6.1) follows immediately. This finished the proof.

2.7. A Hecke character (or Grössencharacter) of F is a continuous homomorphism $\chi : \mathbb{I}_F/F^{\times} \to \mathbb{C}^{\times}$. We say χ is unramified if there exists a complex number $s \in \mathbb{C}$ such that $\chi(x) = |x|^s$. We denote by X the set of Hecke characters of F. We equip X with a structure of Riemann surface such that for each fixed character χ , the map $s \mapsto \chi | \cdot |^s$ is a local isomorphism of \mathbb{C} into X.

Now we choose a splitting $\mathbb{I}_F/F^{\times} = \mathbb{I}_F^1/F^{\times} \times \mathbb{R}_+^{\times}$ of the norm map $|\cdot| : \mathbb{I}_F/F^{\times} \to \mathbb{R}_+^{\times}$. For every Hecke character χ , we put $\chi_0 = \chi|_{\mathbb{I}_F^1/F^{\times}}$ and denote still by χ_0 its extension to \mathbb{I}_F/F^{\times} by requiring χ_0 is trivial on the chosen complement \mathbb{R}_+^{\times} of $\mathbb{I}_F^1/F^{\times}$. Note that χ_0 is necessarily unitary since $\mathbb{I}_F^1/F^{\times}$ is compact and χ/χ_0 is unramified, i.e. $\chi = \chi_0|\cdot|^s$ with $s \in \mathbb{C}$. We put $\sigma(\chi) = \Re(s)$, which is independent of the choice of the splitting. For $v \in \Sigma$, we put $\chi_v = \chi|_{F_*^{\times}}$. The local component χ_v is unramified for almost all v.

Definition 2.8. Let $f \in \mathcal{S}(\mathbb{A}_F)$ and χ be a Hecke character of F. We define the zeta function of f at χ to be

$$\zeta(f,\chi) = \int_{\mathbb{I}_F} f(x)\chi(x) \mathrm{d}^{\times} x.$$

Lemma 2.9. Let $f \in S(\mathbb{A}_F)$ and $\chi \in X$. Then the zeta function $\zeta(f,\chi)$ converges absolutely for $\sigma(\chi) > 1$.

¹Note that the finiteness of Vol(\mathbb{I}^1/F^{\times}) implies that $\int_{V/\text{Log}(U_F)} d^{\times}x$ is finite, and hence $\text{Log}(U_F) \subset V$ is a lattice. This actually gives another proof of Dirichlet's theorem that U_F has rank $r_1 + r_2 - 1$.

Proof. We may assume $f = \bigotimes_{v \in \Sigma} f_v$ with $f_v = 1_{\mathcal{O}_v}$ for almost all $v \in \Sigma_f$, and $\chi = \chi_0 |\cdot|^s$ where $\chi_0 : \mathbb{I}_F^1 / F^{\times} \to S^1$ unitary. By definition, we have an Euler product

$$\zeta(f,\chi) = \prod_{v \in \Sigma} \zeta(f_v,\chi_v),$$

where $\zeta(f_v, \chi_v)$ is the local zeta function defined in 1.10. We have seen in the proof of Theorem 1.12(3) that

$$\zeta(1_{\mathcal{O}_v}, |\cdot|_v^s) = (N\mathfrak{d}_v)^{-\frac{1}{2}} \frac{1}{1 - N\mathfrak{p}_v^{-s}}.$$

Thus there exists a finite subset S of places such that

$$|\zeta(f,\chi_0|\cdot|^s)| \le \prod_{v\in S} |\zeta(f_v,\chi_{0,v}|\cdot|^s_v)| \prod_{v\notin S} \frac{1}{1-N\mathfrak{p}_v^{-\sigma}}$$

Since each $\zeta(f_v, \chi_{0,v} | \cdot |_v^s)$ converges for $\Re(s) > 0$, we are reduced to showing that the product $\prod_{v \notin S} \frac{1}{1 - N \mathfrak{p}_v^{-\sigma}}$ converges absolutely for $\sigma > 1$. If $F = \mathbb{Q}$, this is a well-known theorem of Euler. In the general case, we have

$$\prod_{v \notin S} \frac{1}{1 - N \mathfrak{p}_v^{-\sigma}} \le \prod_p \prod_{v \mid p} \frac{1}{1 - N \mathfrak{p}_v^{-\sigma}} \le (\prod_p \frac{1}{1 - p^{-\sigma}})^{[F:\mathbb{Q}]}.$$

Theorem 2.10 (Tate). Let $f \in S(\mathbb{A}_F)$. The zeta function $\zeta(f, \chi)$ can be analytically continued to a meromorphic function on the whole complex manifold X. It satisfies the functional equation

(2.10.1)
$$\zeta(f,\chi) = \zeta(f,\hat{\chi}),$$

where \hat{f} is the Fourier transform of f (2.3.1), and $\hat{\chi} = |\cdot|\chi^{-1}$. Moreover, $\zeta(f,\chi)$ is holomorphic on the complex manifold X except for two simple poles at $\chi = 1$ and $\chi = |\cdot|$, with residues $-f(0)\operatorname{Vol}(\mathbb{I}_F^1/F^{\times})$ at $\chi = 1$ and $\hat{f}(0)\operatorname{Vol}(\mathbb{I}_F^1/F^{\times})$ at $\chi = |\cdot|$, where

$$\operatorname{Vol}(\mathbb{I}_F^1/F^{\times}) = \frac{2^{r_1}(2\pi)^{r_2}hR}{w\sqrt{|\Delta_F|}}.$$

Proof. Let $\mathbb{I}_{F}^{\geq 1}$ (resp. $\mathbb{I}_{F}^{\leq 1}$) be the subset of \mathbb{I}_{F} with norm ≥ 1 (resp. ≤ 1). Since $\mathbb{I}_{F}^{1} = \mathbb{I}_{F}^{\geq 1} \cap \mathbb{I}_{F}^{\leq 1}$ has Haar measure 0 in \mathbb{I}_{F} , we have

$$\zeta(f,\chi) = \int_{\mathbb{I}_F} f(x)\chi(x)\mathrm{d}^{\times}x = \int_{\mathbb{I}_F^{\geq 1}} f(x)\chi(x)\mathrm{d}^{\times}x + \int_{\mathbb{I}_F^{\leq 1}} f(x)\chi(x)\mathrm{d}^{\times}x.$$

Note that f is well-behaved when $|x| \to \infty$, the first integral $\int_{\mathbb{I}_F^{\geq 1}} f(x)\chi(x)d^{\times}x$ converges absolutely for all $\chi \in X$, thus defines a holomorphic function on the whole complex manifold X. For the second integral, we have

$$\int_{\mathbb{I}_{F}^{\leq 1}} f(x)\chi(x)\mathrm{d}^{\times}x = \int_{\mathbb{I}_{F}^{\leq 1}/F^{\times}} (\sum_{\xi \in F^{\times}} f(\xi x))\chi(x)\mathrm{d}^{\times}x$$

by the triviality of χ on F^{\times} . It's easy to check that the Fourier transform of $f(x \cdot)$ is $|x|^{-1}\hat{f}(\frac{\cdot}{x})$. It follows from the Poisson formulae (2.4.1) that

$$\sum_{\xi \in F^{\times}} f(x\xi) = \sum_{\xi \in F^{\times}} \frac{1}{|x|} \hat{f}(\frac{\xi}{x}) + \frac{1}{|x|} \hat{f}(0) - f(0).$$

Therefore, we get

$$\int_{\mathbb{I}_F^{\leq 1}/F^{\times}} f(x)\chi(x)\mathrm{d}^{\times}x = \int_{\mathbb{I}_F^{\leq 1}/F^{\times}} (\sum_{\xi\in F^{\times}} \frac{1}{|x|}\hat{f}(\frac{\xi}{x}))\chi(x)\mathrm{d}^{\times}x + \int_{\mathbb{I}_F^{\leq 1}/F^{\times}} (\frac{1}{|x|}\hat{f}(0) - f(0))\chi(x)\mathrm{d}^{\times}x.$$

Making the change of variable $y = \frac{1}{x}$, the first term on the right hand side above becomes

$$\int_{\mathbb{I}_{F}^{\leq 1}/F^{\times}} (\sum_{\xi \in F^{\times}} \hat{f}(\frac{\xi}{x})) \chi(x) \mathrm{d}^{\times} = \int_{\mathbb{I}_{F}^{\geq 1}/F^{\times}} (\sum_{\xi \in F^{\times}} \hat{f}(y\xi)) \hat{\chi}(y) \mathrm{d}^{\times} y$$
$$= \int_{\mathbb{I}_{F}^{\geq 1}} \hat{f}(y) \hat{\chi}(y) \mathrm{d}^{\times} y.$$

We choose a splitting $\mathbb{I}_F/F^{\times} = \mathbb{I}_F^1/F^{\times} \times \mathbb{R}_+^{\times}$ as in 2.7, and write that $\chi = \chi_0 |\cdot|^s$, with $\chi_0 : \mathbb{I}_F^1/F^{\times} \to \mathbb{C}^{\times}$ is unitary and $s \in \mathbb{C}$. We have

$$\int_{\mathbb{I}_{F}^{\leq 1}/F^{\times}} (\frac{\hat{f}(0)}{|x|} - f(0))\chi(x)\mathrm{d}^{\times}x = (\int_{\mathbb{I}_{F}^{1}/F^{\times}} \chi_{0}(x)\mathrm{d}^{\times}x)(\int_{t=0}^{1} (\frac{\hat{f}(0)}{t} - f(0))t^{s-1}dt.$$

We have

$$\int_{\mathbb{I}_F^1/F^{\times}} \chi_0(x) \mathrm{d}^{\times} x = \mathrm{Vol}(\mathbb{I}_F^1/F^{\times}) \delta_{\chi_0,1} = \begin{cases} 0 & \text{if } \chi_0 \text{ is non-trivial;} \\ \mathrm{Vol}(\mathbb{I}_F^1/F^{\times}) & \text{if } \chi_0 \text{ is trivial.} \end{cases}$$

For the second term, we have

$$\int_{t=0}^{1} \left(\frac{\hat{f}(0)}{t} - f(0)\right) t^{s-1} dt = \frac{\hat{f}(0)}{s-1} - \frac{f(0)}{s}.$$

Combining all the computations above, we get

$$\zeta(f,\chi) = \int_{\mathbb{I}_{F}^{\geq 1}} f(x)\chi(x) \mathrm{d}^{\times}x + \int_{\mathbb{I}_{F}^{\geq 1}} \hat{f}(x)\hat{\chi}(x) \mathrm{d}^{\times}x + \mathrm{Vol}(\mathbb{I}_{F}^{1}/F^{\times})(\frac{\hat{f}(0)}{s-1} - \frac{f(0)}{s})\delta_{\chi_{0},1}.$$

Now it's clear that the right hand side of the equation above is invariant with f replaced by \hat{f} and χ replaced by $\hat{\chi}$. Thus (2.10.1) follows immediately. The moreover part follows from the fact that the first two integrals above define holomorphic functions on X.

2.11. We indicate how to apply Tate's general theory to recover the classical results on the Dedekind Zeta function of a number field. Recall that Dedekind's zeta function is defined to be

$$\zeta_F(s) = \prod_{v \in \Sigma} \frac{1}{1 - N\mathfrak{p}_v^{-s}} = \sum_{\mathfrak{a} \subset \mathcal{O}_F} \frac{1}{(N\mathfrak{a})^s},$$

which converges absolutely for $\Re(s) > 1$. In the classical theory of Dedekind's zeta function, we have

Theorem 2.12. Let F be a number field with r_1 real places and r_2 complex places. We put

$$Z_F(s) = G_1(s)^{r_1} G_2(s)^{r_2} \zeta_F(s),$$

where $G_1(s) = \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$, $G_2(s) = (2\pi)^{1-s} \Gamma(s)$. Then $Z_F(s)$ is a meromorphic function in the s-plan, holomorphic except for simple zeros at s = 0 and s = 1, and satisfies the functional equation

$$Z_F(s) = |\Delta_F|^{\frac{1}{2}-s} Z_F(1-s).$$

Its residues at s = 0 and s = 1 are respectively $-\sqrt{|\Delta_F|} \operatorname{Vol}(\mathbb{I}_F^1/F^{\times})$ and $\operatorname{Vol}(\mathbb{I}_F^1/F^{\times})$.

Proof. We apply Tate's theorem 2.10 to $\chi = |\cdot|^s$, and $f = \otimes f_v$ with

$$f_v = \begin{cases} e^{-\pi x_v^2} & \text{if } v \text{ is real;} \\ e^{-\pi x_v \bar{x}_v} & \text{if } v \text{ is complex;} \\ 1_{\mathcal{O}_v} & \text{if } v \text{ is non-archimedean.} \end{cases}$$

By the local computations in 1.12, we have

$$\zeta(f_v, |\cdot|^s) = \begin{cases} \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) & \text{if } v \text{ is real;} \\ 2\pi^{1-s} \Gamma(s) & \text{if } v \text{ is complex;} \\ (N\mathfrak{d}_v)^{-\frac{1}{2}} \frac{1}{1-N\mathfrak{p}^{-s}} & \text{if } v \text{ is non-archimedean.} \end{cases}$$

Therefore, we get

$$\zeta(f,\chi) = \prod_{v \in \Sigma} \zeta(f_v, |\cdot|^s) = 2^{r_2 s} |\Delta_F|^{-\frac{1}{2}} Z_F(s).$$

On the other hand, we have $\hat{f} = \bigotimes_v \hat{f}_v$ with $\hat{f}_v = f_v$ if v is real, $\hat{f}_v(z) = 2f_v(2z)$ if v is complex, and $\hat{f}_v = (N\mathfrak{d}_v)^{-\frac{1}{2}}\mathfrak{l}_{\mathfrak{d}_v}^{-1}$ if v is non-archimedean. The local zeta functions are

$$\zeta(\hat{f}_v, |\cdot|^{1-s}) = \begin{cases} \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2}) & \text{if } v \text{ is real;} \\ 2^s (2\pi)^s \Gamma(1-s) & \text{if } v \text{ is complex;} \\ (N\mathfrak{d}_v)^{-s} \frac{1}{1-N\mathfrak{p}^{s-1}} & \text{if } v \text{ is non-archimedean.} \end{cases}$$

Hence, we obtain

$$\zeta(\hat{f}, |\cdot|^{s}) = \prod_{v \in \Sigma} \zeta(\hat{f}_{v}, |\cdot|^{s}) = 2^{r_{2}s} |\Delta_{F}|^{-s} Z_{F}(1-s).$$

The functional equation of $Z_F(s)$ follows immediately from $\zeta(f, |\cdot|^s) = \zeta(\hat{f}, |\cdot|^{1-s})$. The resides of $Z_F(s)$ follows from the residues of $\zeta(f, |\cdot|^s)$ and the fact that f(0) = 1 and $\hat{f}(0) = 2^{r_2} |\Delta_F|^{-\frac{1}{2}}$.

References

- [Ta50] Tate, John T. (1950), Fourier analysis in number fields, and Hecke's zeta-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., pp. 305347.
- [We74] A. Weil, *Basic Number Theory*, Third Edition, Springer-Verlag, (1974).